
P E R F O R M A N C E M O D E L S
F O R E M B E D D E D

S O F T WA R E P R O D U C T L I N E S

Dissertation

zur Erlangung des Grades einer

doktorin der naturwissenschaften

der Universität Osnabrück
am Fachbereich Mathematik/Informatik/Physik

von

birte kristina friesel

Osnabrück

2024



Tag der mündlichen Prüfung: 17. Februar 2025

Dekan: Prof. Dr. Tim Römer

Gutachter: Prof. Dr.-Ing. Olaf Spinczyk

Prof. Dr.-Ing. Timo Hönig



A B S T R A C T

Software product lines deal with functional properties (features) of
configurable software systems. However, these systems also have
non-functional properties such as latency, energy usage, or memory
footprint. Performance models formalize knowledge about those prop-
erties and their relation to individual features; they are often crucial to
building competitive products. While the literature offers a variety of
performance modeling methods for conventional product lines, these
do not address configurable device drivers and hardware components.
Moreover, many approaches either rely on time-consuming and error-
prone manual annotations, or result in models that are so complex
that engineers cannot gain insights by analysing them.

This thesis covers interpretable performance models for configurable
embedded systems, including software product lines, configurable
hardware components, and hybrid product lines that combine both.
It focuses on automation for the entire life cycle, ranging from unat-
tended data acquisition over machine learning methods for model
generation to performance-aware product line configuration. In doing
so, it shows that the disjoint Product Line Engineering and Internet
of Things communities address similar challenges, and combines and
extends aspects from both to obtain accurate and interpretable perfor-
mance models for hybrid and hardware-centric software systems.

Its key contribution is the Regression Model Tree data structure
and machine learning method. Regression model trees resemble the
structure of feature models, but exclusively rely on benchmark data
for model generation. They can be used with software product lines,
configurable hardware components and hybrid product lines, and can
be learned – and understood – even if no feature model is available.
An evaluation on eight product lines and product line-like system
components shows that regression model trees are more accurate and
less complex than other tree-based modeling methods when applied
to hybrid product lines and hardware components.

In addition, this thesis contributes a method for energy measure-
ment automation even if no out-of-band synchronization methods
are available, an analysis of whether performance models should be
part of feature models or kept separate, a product line perspective
on configurable hardware components and device drivers, and case
studies that apply regression model trees to real-world product lines.
The analysis finds that performance models should be kept separate;
regression model trees follow this approach. The case studies cover
both manual model analysis and tool-assisted performance-aware
configuration of Kconfig-based product lines.
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1
I N T R O D U C T I O N

From an outside perspective, building an embedded system may seem
trivial. After all, there is a wide range of commercially available of-
fers for hardware components as well as a variety of commercial and
open-source software components to choose from. Hardware com-
ponents include processors, sensors, actuators, and communication
interfaces; software components include operating systems, user-space
applications, and data serialization formats and libraries.

Consider a wireless sensor node that regularly performs air quality
measurements and wirelessly transmits them to a central hub. One
might assume that the system designer simply needs to combine a
suitable air quality sensor, microcontroller, and radio chip with an
operating system, a radio protocol, and some configuration and glue
code. Once they have verified that the result fulfils the functional
requirements (i.e., it successfully measures and transmits air quality
data), they can deploy it or start selling it.

Of course, in practice, it is not so easy. A battery-powered envi-
ronmental sensor installed in a remote location defeats its purpose
if it only works for a few days before the battery is empty, and an
operating system kernel is useless if it takes up so much memory
that user-space applications frequently encounter out-of-memory er-
rors. Hence, in order to build a useful product, developers need to
take non-functional requirements such as battery runtime or memory
usage into account [Gli07]. These depend on the non-functional prop-
erties (or performance attributes) of each system component, which in
turn depend on the configuration and combination of system compo-
nents: a compute-intensive algorithm on an energy-efficient CPU or a
light-weight algorithm on a less efficient CPU may be fine, while an
inefficient algorithm on an inefficient CPU is not.

This thesis takes a deeper look into the what, why, and how of
performance attributes and performance models for embedded sys-
tem components. Specifically, it looks into ways of predicting how
a component’s configuration affects its performance attributes, and
how performance models and product lines interact. At this point, we
can think of product lines as configurable software or hardware com-
ponents – I will provide a detailed definition, and an explanation as
to why this simplification is not quite correct, in Chapter 2. Before
that, let us look into challenges that embedded developers face when
dealing with non-functional requirements, corresponding research
questions, and the resulting contributions to the state of the art.

1



2 introduction

1.1 challenges

The importance of performance attributes and non-functional require-
ments stems from the variety of resource constraints faced by embed-
ded systems. Available energy, ROM and RAM space, and processing
power are typically limited and should be used responsibly to mini-
mize hardware cost and maximise operating time. However, functional
requirements and system properties do not account for this – they
only describe aspects such as environmental attributes supported
by a certain sensor, or operating system APIs exposed to user-space
applications.

Performance attributes1 describe the energy usage of hardware com-
ponents, memory usage of software components, and similar. They
do not explain what a component does, but how efficient, expensive,
or similar it is. For instance, if two algorithms A and B have identi-
cal functional attributes, but A only needs half as much processing
time, choosing A over B may allow the system designer to use a less
powerful, and thus cheaper, microcontroller. Similarly, if a radio chip
supports a low-power sleep mode, using this sleep mode may require
less power than keeping it idle all the time. However, as starting a
transmission from sleep mode typically takes more time than doing
so from idle mode, the expected usage scenario determines whether
using sleep mode really is more efficient.

Non-functional requirements may state, for instance, that a certain
product must have a minimum battery runtime of four weeks under
certain usage conditions. In order to reason about them, system de-
signers need to know the non-functional properties of each system
component. This is not a trivial task: many software and hardware
components resemble product lines that offer a variety of configura-
tion options, all of which can influence their non-functional properties
in often unexpected and undocumented manners [Ach+

22]. So, there is
not just a choice between different hardware or software components,
but also between different configurations of the same component.

In theory, system designers could run benchmarks for each different
combination and configuration of system components that fulfils the
specified functional requirements, and then determine the optimal
setup for their non-functional requirements. In practice, this is not
feasible, as n boolean configuration options result in up to 2n different
configurations, and software projects like busybox or the Linux kernel
expose thousands of options.

Performance models reduce the need for benchmarks by predicting
non-functional properties of arbitrary system configurations. If system
designers have such a tool at their disposal, they can obtain estimates
for performance attributes of individual system components. This

1 Performance attributes appear under a variety of names; common synonyms in the
literature include non-functional properties and extra-functional properties [DZT12].
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Learning
Algorithm

Configurations x⃗1, x⃗2, . . . ∈ Rn

Observations y1, y2, . . . ∈ R

Performance
Model

Configuration
x⃗ ∈ Rn

Predicted performance
y ∈ R

Figure 1.1: Relation between learning algorithms and performance models.

allows them to reason about the effect of toggling individual con-
figuration options before a prototype has been built, or to devise
performance-aware run-time algorithms [SSS10; HK17; Her+

21]. As
all models come with a certain level of uncertainty, benchmarks are
still relevant for verification of model predictions, e.g. before com-
mitting on a configuration for manufacturing [Hur+

11]. However,
time-consuming benchmark campaigns that cover all valid system
configurations are no longer necessary.

Ideally, a performance model is both accurate enough to generate
useful predictions and simple enough to be understandable by hu-
mans, thus allowing them to reason about the effect of individual
configuration options by looking at the model rather than by compar-
ing predictions for dozens of pairs of configurations. Otherwise, users
should at least have helpful tooling that annotates the performance
effect of configuration options. At the same time, performance models
do not appear out of thin air, and generating or updating them is at
least as important as knowing how to use them [Har+

16]. Machine
learning algorithms help with this, but may rely on manually specified
model templates or come up with complex models that are beyond
human understanding.

Fig. 1.1 illustrates the relation between benchmarks, machine learn-
ing algorithm, and the resulting performance model. First, domain
engineers perform a series of benchmarks that cover a range of system
configurations x⃗i and obtain corresponding performance observations
yi (e.g. latency or power). Next, they pass configurations and obser-
vations to a machine learning algorithm that learns to predict perfor-
mance y from configuration x⃗. Embedded developers can then use the
resulting performance model to predict the performance of individual
system configurations, simulate how changing configuration options
would affect performance, and – if the model is understandable – gain
further insights into system behaviour. Crucially, at this stage, they do
not need access to raw observations or a test bench setup.

These challenges and goals finally bring us to the title of this thesis:
performance models for embedded software product lines. I have spent the
past years examining this topic from several angles, ranging from
automated energy measurements over machine learning algorithms
for performance model generation to tools for performance-aware



4 introduction

product line configuration. This document serves as a collection of my
findings and scientific contributions towards the aforementioned goals.
It combines extended and updated versions of peer-reviewed papers
that I authored over the course of my PhD studies with a common
background, motivation, and set of evaluation targets.

1.2 goals

The concept of performance models for configurable hardware and
software components is far from being a new idea. It has been around
for at least two decades, and two different scientific communities have
been examining it closely.

On the one hand, the Cyber-Physical Systems and Internet of Things
(CPS and IoT) community uses energy models to predict the energy
requirements and timing behaviour of embedded systems and in-
dividual hardware components. The focus lies on hardware states
(e.g. transmit, receive, and idle modes of a radio chip), transitions
between them, and their timing and energy attributes. A key compo-
nent of energy model generation is benchmark automation, as manual
energy measurements are tedious and error-prone [ZO13]. Running
energy benchmarks also requires suitable measurement equipment,
and a benchmark application that exercises all hardware states and
transitions.

On the other hand, the Software Product Line Engineering (SPLE)
community uses non-functional property models to predict non-functional
attributes of software product lines. Here, the focus lies on variability
models that help manage the design space by organizing individual
configuration options in a tree hierarchy and specifying cardinalities
and dependencies. Another important aspect is handling the hundreds
or even tens of thousands of configuration options that prohibit an
exhaustive state space exploration and hinder reasoning about the
importance of individual options. Instead, benchmarks first need to
decide on a sampling strategy, and models must be able to predict
non-functional attributes of previously unseen configurations.

Both communities have a variety of additional names for energy
models and non-functional property models. These include resource
models, power models, quality models, performance-influence models,
and performance prediction models [VS08; McC+

11; Sie+
12b; Sie+

15;
Guo+

18]. In this thesis, I use the umbrella term performance models to
cover all of them.

As far as I am aware, there is little overlap or cooperation between
CPS/IoT and SPLE researchers. While there are indeed differences
in the challenges they face and priorities they set, I do not consider
them to be prohibitive, and in fact think that both communities can
benefit from each other. Hence, this thesis stands at the intersection
of Energy Modeling and Product Line Engineering research. It covers
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performance models for hardware and software components, and also
examines hybrid product lines whose variability entails both hardware
and software configuration options.

More specifically, my goal is to make performance models more
accessible to the general public by minimizing the amount of special-
ized equipment, knowledge, and manual labour required for data
acquisition, performance model generation, and performance model
usage. All methods should be applicable to performance models for
software product lines, energy models for embedded devices, and
hybrid product lines that encompass both. At the same time, I want
the automatically generated models to provide insights into system
behaviour rather than just behaving as black boxes. Again, gaining
these insights should not require an extensive skill set: performance
models should be simple enough to be understandable just from look-
ing at them, and performance-aware configuration software should be
intuitive.

1.3 contributions

On the way towards unattended data acquisition, this thesis con-
tributes the dfatool benchmark and model generation framework that
supports both Kconfig-based software product lines and energy mea-
surements of embedded peripherals. The latter requires a method for
synchronizing benchmark events to energy measurements in order for
its automation to work. However, the out-of-band signals that conven-
tional synchronization methods rely on may not be available e.g. due
to hardware not exposing suitable outputs or due to lack of funding
for measurement equipment with appropriate inputs.

This challenge leads to research question RQ1: are automated and
accurate CPS/IoT energy measurements feasible on hardware that
lacks suitable out-of-band synchronization methods? As part of the
answer, I will present a generic drift compensation algorithm that ex-
clusively relies on on-board timers and in-band signalling, and show
how it allows for automated energy measurements on $20 commercial
off-the-shelf hardware.

When it comes to performance model generation, the first question
is how variability model and performance model should relate. Hence,
RQ2 is: should performance models be integrated into variability
models, or should they be separate entities? This is a fundamental
question, as it dictates requirements for performance model structure
and machine learning methods.

In a similar vein, the differences and similarities between non-
functional property models and energy models beg the question
whether it is viable to devise a common machine learning algorithm
for both domains. I.e., RQ3: can a common machine learning algorithm
for SPLE and CPS/IoT performance models provide lower prediction
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Data Acquisition
Chapter 5

Variability Models
Chapter 6

Performance Models
Chapter 7

Applications
Chapter 8

Relation to performance models [Fri+22b]
Boolean and numeric features [FS22b]

Measurement automation without
out-of-band synchronization [FKS21]

Regression model trees [FBS18; FS22c]

Agricultural AI product line [FS22a]
Performance-aware configuration [Fri+22a]
Data serialization formats [FS21]

RQ1

RQ2

RQ3

RQ4

Figure 1.2: Research questions addressed in this thesis as well as contri-
butions and corresponding publications in relation to a typical
performance model generation and usage workflow.

error and model complexity than conventional approaches, without
requiring manually provided domain information or model structure?
Here, my key contribution is the novel regression model tree machine
learning algorithm and performance model data structure.

Finally, model usage covers practical considerations. These include
performance trade-offs in an artificial intelligence (AI) application and
in data serialization format selection for wireless sensor networks.
The AI application deviates from typical approaches in the litera-
ture by using an SPL-inspired black-box approach rather than the
white-box variant that is common in the AI domain. This warrants an
additional question (RQ4): are product line engineering and perfor-
mance modeling techniques also applicable to product lines that cover
soft- and hardware variability? In addition, I contribute a utility for
performance-aware configuration of Kconfig-based product lines.

Fig. 1.2 gives an overview of the research questions, contributions,
and publications covered in this thesis. It follows the typical workflow
of performance model generation for an existing product line, starting
out with data acquisition. Once all benchmark data is available, a
machine learning algorithm (such as regression model trees) can build
a performance model, and users can apply it to real-world engineering
and optimization tasks.

1.4 structure

The next two chapters cover software product lines and performance
models for software product lines (Chapter 2) as well as energy models
for hardware peripherals (Chapter 3). This includes an introduction
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to variability models, related work on performance models and ma-
chine learning algorithms, quality metrics that will be used for model
evaluation, and other definitions that are relevant throughout the en-
tire document. They also introduce the product lines and hardware
components that serve as application examples and evaluation targets
throughout this thesis. Chapter 4 provides the problem statement: a
re-cap of the research questions and how they relate to the state of the
art presented in the introduction chapters. The following four chapters
answer RQ1 through RQ4 and present additional contributions.

First, Chapter 5 covers benchmark generation and data acquisition.
For software product lines, this boils down to an implementation of
existing data acquisition methods. For embedded peripherals, automa-
tion is not always so easy – here, I will present my answer to RQ1.
Next, Chapter 6 examines the relation between variability models and
performance models, and what kind of configuration options (boolean
or numeric) a performance model should consider for performance
prediction. Based upon these findings, Chapter 7 motivates, defines,
and evaluates the regression model tree data structure and machine
learning algorithm. Chapter 8 contains further applications of perfor-
mance models to practical issues such as data serialization format
selection in wireless sensor networks and performance optimization
of an agricultural AI product line. Finally, chapter 9 concludes and
gives an outlook into future research avenues.





2
S O F T WA R E P R O D U C T L I N E S

To introduce the concepts of software product lines and performance
models, let us consider the case of an experienced embedded engineer
who wants to design a minimal embedded Operating System (OS) to
support the evaluation of hardware and software components for Inter-
net of Things (IoT) devices. It must support several target architectures,
provide device drivers for common peripheral interfaces, and should
be limited to the bare necessities apart from that. Since the target ar-
chitecture dictates which compiler and low-level implementations (e.g.
context switch code or on-board peripheral drivers) must be used to
obtain a binary image that can be executed on it, the engineer cannot
compile a single OS image that works on any architecture. However,
maintaining an individual operating system code base for each target
architecture is not desirable either.

Thanks to their domain knowledge, the engineer knows that an op-
erating system contains numerous architecture-agnostic components
that do not need to be adapted for different target architectures. In
this case, architecture-specific low-level modules are the only variable
components within the operating system. If the engineer ensures that
architecture-specific components are only linked into the operating
system image when needed, and defines a common programming
interface for accessing them, they can compile binaries for any sup-
ported architecture by selectively including / excluding components
during compilation. This reasoning about features, components, and
interfaces between them is called domain engineering. The resulting
operating system is not a complete and ready-to-use product by itself,
but rather a Software Product Line (SPL) that can be compiled into
several different products depending on the selected features [Sin+

07;
Keh+

21]. In this example, each target architecture is a feature, so there
is one operating system product per target architecture.

Now, assume that a developer wants to use this operating system to
run a signal processing application. The application is simple enough
to run on any supported target architecture – hence, all products have
the same functional properties. However, hardware cost, energy usage,
latency, and throughput can vary. Some platforms may have low cost,
but high latency and energy requirements, while more expensive
hardware may offer improved throughput or energy efficiency. In
general, there is no single best product; instead, each developer must
choose according to their optimization goals and design constraints.
As such, these performance attributes – also known as Non-Functional

9
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Properties (NFPs) – play a vital role in the configuration of software
product lines for embedded platforms.

While configuring an optimal product may be easy for this toy
example, it is much less so in real-world product lines with hundreds
or even thousands of features. Here, models that predict how individual
features affect the non-functional properties of individual products
come into play. They can be used to predict the effect of features at
configuration time, and to automatically configure features that are not
relevant for functional product properties [Ola+

12; SSS10]. Preferably,
these models should be accurate, easy to understand, and require a
minimal amount of manual intervention during training.

This chapter gives an overview of methods and definitions for each
of these aspects:

• feature models for software product lines,

• performance models for non-functional product properties,

• variability modeling languages that express feature models as
text, with a special focus on the Kconfig language,

• machine learning methods for performance model generation,
and

• quality metrics that assess model accuracy and interpretability.

The operating system product line introduced in the previous para-
graphs will serve as a running example throughout the chapter. At
the end, I will present the real-world software product lines that serve
as evaluation targets in this thesis.

2.1 feature models

As the introductory example shows, product lines must be configured
into concrete products before they can be used. With an appropriate
configuration interface, this is easy to achieve – it can be as simple
as using conditional blocks in Makefiles and source code, and set-
ting compile-time variables and pre-processor flags to indicate the
target architecture. For instance, a user could run make arch=msp430

to compile an operating system product for the MSP430 architecture.
This, in turn, would pass the -DARCH_MSP430 flag to the compiler, caus-
ing it to include architecture-specific code that is guarded by #ifdef

ARCH_MSP430 statements and leave out code that is specific to other
architectures.

When dealing with real-world software product lines, such as the
busybox multi-call binary1 or the Linux kernel, such a simple approach

1 In busybox documentation, the term multi-call binary describes a single binary that
provides distinct applets depending on how it is called. For instance, busybox ls

behaves like the ls utility, and busybox telnet provides a telnet client. Users define
the set of supported applets at compile time.
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is no longer sufficient. These expose thousands of features with com-
plex dependencies, allowing them to be used in – and optimized for – a
wide range of use cases. Manual feature and dependency management
is not feasible at this scale. Instead, they use a formal feature model that
defines and structures the features within the SPL, where each feature
is a product characteristic such as support for specific architectures or
device drivers [Kan+

90]. Combined with a configuration frontend that
can read the feature model and save individual configurations, this
allows users to define and build valid configurations [Ape+

13].
A feature model breaks down a product line’s variability into a

hierarchy of features [Kan+
90]. Abstract features group sub-features

but do not provide any product characteristic by themselves, whereas
concrete features can be enabled or disabled and affect the resulting
product. Individual features are either mandatory (they must be en-
abled if the parent is enabled) or optional (they can be enabled if the
parent is enabled). In both cases, a sub-feature cannot be enabled if
the parent feature is disabled. Each group of sub-features has one of
three relations:

• and: each mandatory feature must be selected (this is the default);

• alternative (exclusive or): exactly one feature must be selected;

• or (inclusive or): at least one feature must be selected.

Product line engineers can also specify more complex cardinalities,
such as the minimum and maximum number of enabled sub-features.
By default, concrete features are boolean, i.e., they can be disabled or
enabled. Users may also specify numeric features that take a number
from the domain N or R (depending on application), and string
features that take arbitrary user-provided data (e.g. interface names).

A feature model can be limited to functional product characteris-
tics, or include implementation details such as different algorithms
that achieve the same function from an end-user perspective, but
have different non-functional properties [CHE05]. The latter allows
stakeholders to compare and optimize performance attributes of con-
figurations that fulfil the same functional requirements. Product line
engineers may also design a hierarchy of feature models to separate
functional aspects and implementation details [Ros+

11]. Feature mod-
els in this thesis contain both kinds of features – however, the findings
also apply to disaggregated models.

When using a feature model to configure an SPL, each product is
defined by a unique configuration of concrete features, or in formal
terms: a feature vector that maps each feature to a value [Nai+

20]. In
the simplest case, where features can only be disabled or enabled,
products of a product line with n features can be unambiguously
described with feature vectors from the set {0, 1}n. In general, the
domain may also include numeric and string entries, but the concept
of a feature vector remains the same.
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Figure 2.1: Feature model for a sample operating system product line.

Fig. 2.1 shows the feature model of the OS product line that serves
as running example in this chapter, using the established visualization
method [Kan+

90]. The OS root feature is abstract, so it cannot be
enabled or disabled individually. It defines that an operating system
product consists of the architecture it is compiled for, peripheral
interface drivers, and an optional stack guard feature. Architecture
and drivers are abstract as well.

As each product only supports a single architecture, and compiling
an operating system without underlying hardware is not sensible in
this case, the mandatory Arch feature indicates that exactly one of its
sub-features must be selected: AVR, MSP430, or ARM. These serve
as short placeholders for specific microcontroller types, such as AVR
ATMega2560 or MSP430FR5994.

The optional Stack Guard feature uses canary values to detect stack
overflows. If enabled, it can either halt the operating system once it
has detected a stack overflow or trigger a hardware reset; hence, Halt
and Reset are alternative features. Due to the implicit dependency
relation imposed by the tree structure, Halt and Reset can only be
enabled if Stack Guard is enabled.

The SPI, I2C and UART drivers can be enabled and disabled individ-
ually. SPI and I2C use application-provided buffers, whereas the UART
driver provides an OS-managed buffer for incoming transmissions.
Therefore, if the UART driver is enabled, users must configure RX
buffer size.

Product line engineers can extend the feature model with explicit
dependencies, also known as cross-tree constraints. For example, an
engineer may limit RX buffer size depending on the selected archi-
tecture to ensure that sufficient RAM is available for other tasks:
RX Buffer ≤ 256 ∧ (AVR ⇒ RX Buffer ≤ 64). Or, due to limited pro-
cessing resources, they may specify that Stack Guard is not available
on ATMega: ATMega⇒ ¬Stack Guard.
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These constraints ensure that any valid configuration results in a
working product. The feature vector encodes configurations as follows.

x⃗ = (xAVR, xMSP430, xARM, xStack Guard, xHalt, xReset,

xSPI, xI2C, xUART, xRX Buffer) ∈ {0, 1}9 ×N1

However, there is no description of non-functional product at-
tributes, and thus users without domain knowledge cannot aim for
low cost or resource usage when configuring products. Performance
models address just that.

2.2 performance models

Mathematically speaking, a performance model (or NFP model) is a func-
tion f : x⃗ ↦→ y that predicts a performance attribute (non-functional
property, NFP) y of a product line configuration x⃗. For instance, it may
predict the size of a kernel image or busybox binary from a .config

file, the throughput of a video encoder from its command-line config-
uration, the latency of a neural network from its layout, or operating
system size from the feature vector shown above.

For the operating system example, assume that the developer is
interested in hardware cost (e) and binary size (kB). The former is
relevant for the sales department, and the latter dictates how much
space is available for applications and whether the operating system
product fits onto its target platform in the first place.

Performance models can be designed and interpreted manually
by a domain expert, generated automatically by a machine learn-
ing algorithm and interpreted by performance-aware configuration
software, or built and used with a combination of both. This section
only covers manual specification and interpretation using feature- and
variant-wise annotation – automation methods follow in Section 2.5.

Feature-Wise Annotation (FW) is one of the simplest methods for
performance modeling. It associates each (boolean) feature with a static
performance attribute, and assumes that the performance attribute
of the entire product is the sum of performance attributes of enabled
features. The model can be created manually by a domain expert
or automatically via machine learning. This section showcases the
manual method by providing fictional hardware cost and binary size
values for the example operating system product line. In a real-world
use case, practitioners would obtain these using a combination of
domain knowledge and benchmarks.

As the name suggests, hardware cost is dictated by the hardware
architecture the product runs on, and is independent of Stack Guard
and driver configuration. Thus, annotating each Arch sub-feature with
the bulk price of the respective hardware platform (say, 2 e for AVR,
4 e for MSP430, and 3 e for ARM) is sufficient and the hardware cost
model is complete.
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Figure 2.2: Feature model for a sample operating system product line, using
feature- and variant-wise annotations to model hardware cost
and kernel size.

We can start with the same approach for binary size. As each prod-
uct is built for exactly one architecture, product line engineers can
annotate each Arch sub-feature with the combined size of common
and architecture-specific operating system components, excluding
drivers and stack guard code: 18 kB for AVR, 15 kB for MSP430, 14 kB
for ARM.

The stack guard feature is largely architecture-independent, and
can also be annotated this way. When rounding to whole kilobytes, it
increases binary size by 4 kB regardless of halt/reset configuration.

Drivers, on the other hand, work with architecture-specific periph-
eral interfaces. While the SPI driver introduces just 3 kB on MSP430

and ARM, it increases total size by 5 kB on AVR, so a simple annotation
is not sufficient. This phenomenon is known as feature interaction, and
it is becoming more and more common in today’s increasingly com-
plex software and ever-expanding feature models [Tër+

22]. Prominent
examples are cross-cutting concerns such as debug flags, optimization
options, security features, and the hardware selection shown here.

Variant-wise annotations address this by considering interactions
between related features [Sie+

12b]. They can express performance
attributes that are only relevant if two or more features are enabled.
For instance, assuming that SPI takes up 3 kB on MSP430 and ARM,
and 5 kB on AVR, a product line engineer will annotate the pairs
(MSP430, SPI) and (ARM, SPI) with 3 kB, and (AVR, SPI) with 5 kB.
They can do the same for I2C and UART. As the RX buffer is located
in RAM, it does not affect binary size. Fig. 2.2 shows the resulting
feature interaction model.

This combined variability and performance model allows for per-
formance-aware configuration of the operating system product line.
Anyone can predict the cost and size of arbitrary products within the
product line by calculating the sum of all feature- and variant-wise
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annotations of enabled features, and also see how each feature affects
them. For example, if a user is looking for an I2C-enabled kernel with
minimal footprint, they immediately see that both MSP430 and ARM
result in a 16 kB binary, whereas the AVR variant would take up 22 kB.
The model also shows that ARM is cheaper than MSP430, so they may
be inclined to use an ARM processor for this task.

While this works well in a toy example with just nine features
and nine interactions, it turns into a significant engineering effort
when applied to real-world product lines with hundreds to thousands
of features and interactions. Machine learning offers an alternative
approach for these cases: run benchmarks for different configurations
and automatically generate a performance model using a suitable
machine learning algorithm. Doing this at scale relies on the ability to
extract configurations and feature vectors from variability models, run
automated benchmark campaigns, and feed observations into model
learning algorithms. This, in turn, benefits from machine-readable
variability models and well-defined variability modeling languages.

2.3 variability modeling languages

From a language design point of view, the previous sections intro-
duced variability models in a deliberately informal manner. Before
moving on to textual models and actual variability modeling lan-
guages, let us take a step back and examine how these relate to the
expressiveness and graphical representation of variability models.

Variability modeling languages (and domain-specific languages
in general) distinguish between abstract syntax and concrete syn-
tax [Don+

84; BV04]. Abstract syntax defines structure and expressive-
ness – in this case, feature hierarchies, feature types, and cardinalities.
Concrete syntax defines the representation of language components –
for instance the tree structure shown in Fig. 2.1.

A specific variability modeling language builds upon an abstract syntax
that defines its features and expressiveness, e.g. whether it supports
numeric features or complex cardinalities. In addition, it typically
has at least one concrete syntax that defines the representation of
feature models, for instance in a graphical or textual manner. Textual
variability models are machine-readable by design. When created with
appropriate tooling rather than printed in a document, graphical vari-
ability models are machine-readable as well and can be transformed
into textual models or other representations, and vice versa.

Considering the relevance of machine-readability in this thesis, we
will now examine existing variability modeling languages (also known
as feature modeling languages) with a focus on their expressiveness and
textual representation. In addition to expressiveness, the language
choice also dictates the available options for performance prediction
models, tooling support, and more [BSE19].
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Variability modeling languages have been an active research subject
for the past two decades [ES15]. Early approaches, such as the Feature
Description Language, define text-based representations that build
upon already-existing graphical representations [VK02]. They are lim-
ited to boolean features, relations, and constraints. While this allows
for reasoning about any variability model by means of propositional
calculus, the designers of the Feature Description Language already
noted that numeric features and relations may be helpful extensions.

Forfamel and VSL, published only a few years later, support nu-
meric feature attributes such as RX buffer size [AMS06; Abe+

10].
In fact, Forfamel handles arbitrary attribute types, including strings
and numeric attributes with optional range limits. Its authors also
suggest using a constraint language to express dependencies on fea-
ture attributes rather than just features. However, in the provided
concepts and implementations, all attributes are purely informative.
They can be configured by the user and read out by software, but
cannot be reasoned upon. For example, they cannot express the
RX Buffer ≤ 256 ∧ (AVR⇒ RX Buffer ≤ 64) constraint from Section
2.1.

Still, this provides an early method for augmenting features with
performance attributes. By specifying constant feature attributes such
as hardware cost or binary size, and assuming that the cost or size
of a product is the sum of the cost or size of all selected features,
practitioners and algorithms can predict overall product cost or size.
This is a hack, though: feature attributes were not meant for this task,
and there are neither syntax nor semantic rules that properly define
the aggregation of non-functional properties.

TVL and VELVET introduce just this: aggregate functions for feature
attributes [Bou+

10; Ros+
11; Sie+

11]. For instance, the following TVL
expression declares that a parent feature’s text segment size is the sum
of the text segment size of all enabled child features:

int textSize is sum(selectedChildren.textSize);

Thus, practitioners can define product performance based on non-
functional properties, and reason about optimal configurations. How-
ever, they can only do so for performance properties that are a simple
aggregation of feature-specific values – i.e., the contribution of each
feature is independent of the configuration of other features. As we
have already seen, this is not always the case.

Hence, modern variability modeling approaches like Clafer/Clafer-
Moo and SPL Conqueror include methods to specify feature interac-
tion [BCW10; Bąk+

16; Ant+
13; Sie+

12b; Sie+
12a]. For example, in Clafer,

engineers may specify that enabling the Debug feature increases total
binary size by 10 % on average:

binarySize = (sum Feature.binarySize) * (Debug ? 1.1 : 1)
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Listing 2.1: UVL feature model for a sample operating system product line.

features

OS {abstract}

mandatory

Arch {abstract}

alternative

AVR

MSP430

ARM

Drivers {abstract}

optional

SPI

I2C

UART

optional

StackGuard

alternative

Halt

Reset

constraints

StackGuard => MSP430 | ARM

One of the most recent variability modeling language specimen is
the Universal Variability Modeling Language (UVL). It is part of an
initiative that aims to find a community consensus on best practices for
variability modeling, and to define a corresponding universal variabil-
ity modeling language [Sun+

21b]. In this spirit, there is support for in-
teractive generation and usage of UVL models [Sun+

21a], and for con-
version to and from other variability modeling languages [Rom+

22].
As part of this initiative, practitioners expressed their priorities for

variability modeling language features in questionnaires. For example,
seven of 20 participants indicated that feature attributes are nice to
have, and two deemed them as absolute necessities [Sun+

21b].
As of late 2022, a first formal definition of UVL exists, and the au-

thors state that it may be refined in the future. This UVL version does
not support feature attributes by itself, but there is an experimental
superset of UVL with feature attribute support. So, even after two
decades of research, choosing a suitable variability modeling language
is far from trivial.

After this brief history lesson, let us examine how two recent tex-
tual variability modeling languages express the OS feature model
defined in Fig. 2.2. Listing 2.1 contains a UVL model for this operating
system product line example. Its nested definitions closely resemble
the tree structure of Fig. 2.1. As UVL does not (yet) support numeric
features, the model does not contain RX buffer size and the associated
constraint.

Listing 2.2 shows a Clafer model for the same product line, including
performance attributes using feature- and variant-wise annotations.
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Listing 2.2: Clafer feature model for a sample operating system product line,
annotated with cost and size attributes.

abstract Feature

cost : integer

size : integer

abstract OS

xor Arch

AVR : Feature [ (cost = 2), (size = 18) ]

MSP430 : Feature [ (cost = 4), (size = 15) ]

ARM : Feature [ (cost = 3), (size = 14) ]

Drivers

SPI : Feature ? [ size = AVR ? 5 : 3 ]

I2C : Feature ?

[ size = AVR ? 4 : MSP430 ? 2 : 3 ]

UART : Feature ? [ size = ARM ? 4 : 2 ]

RXBuffer : integer

xor StackGuard : Feature ? [ size = 4 ]

Halt : Feature

Reset : Feature

total_cost : integer [ total_cost = sum Feature.cost ]

total_size : integer [ total_size = sum Feature.size ]

[ StackGuard => MSP430 || ARM ]

[ UART => RXBuffer <= 256 ]

[ UART && AVR => RXBuffer <= 64 ]

Here, too, there is a clear relation between textual variability model
and tree structure. However, due to language-level support for ab-
stract features, inheritance, and performance attributes, the textual
representation is harder to digest.

My own research focuses on working with existing real-world prod-
uct lines, or configurable software projects that behave similar to
product lines. In general, these do not come with a feature model de-
fined in UVL, Clafer, or a similar formal variability modeling language.
Instead, they either do not have a formal variability model at all, or
rely on the Kconfig variability modeling language. Hence, although
the methods I will present in this thesis are applicable to any of the
aforementioned variability modeling languages, the implementation
builds upon Kconfig-based product lines and software projects.

2.4 the kconfig language

Kconfig is far from an ideal variability modeling language. It is meant
to solve the practical issue of Linux kernel configuration and has
not been developed according to software engineering research prin-
ciples [EKS15]. However, its wide-spread adoption in open-source
software projects such as Linux or busybox makes it a suitable vari-
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ability modeling language for evaluation of real-world applications.
More so, even if projects like Linux are not developed according to
the guidelines of Software Product Line Engineering (SPLE), they can
be understood as software product lines [Sin+

07]. Thus, building on
top of Kconfig ensures compatibility with several ready-to-evaluate
software projects. Using those as evaluation targets also helps ensure
that the results presented in this thesis apply to real-world product
lines.

The Kconfig ecosystem uses a Kconfig text file to define feature
models. In contrast to UVL and other languages from the SPL com-
munity, a Kconfig model does not define a feature tree via nesting
or references. While the choice and menu keywords allow engineers
to define a group of features with a common parent, these are not
mandatory. Instead, Kconfig configuration frontends infer a tree struc-
ture from feature dependencies as well as choice and menu groups.
So, the tree structure is only present at configuration time, and only
when using a suitable Kconfig frontend.

A Kconfig file is made up of config entries that define individual
features. Each feature is either bool (yes / no, a boolean feature),
tristate (yes / module / no, often used to decide whether fea-
tures should be compiled into the kernel, into separate module files,
or not at all), int / hex (numeric), or string (e.g. the path to the
build toolchain). Features have a user-visible prompt and optional
help text. Additionally, they can depend on boolean expressions that
reference other features (depends on), reverse-depend on features
(select/imply), have default values, and be limited to a numeric
range.

Entries without a prompt are legal, but invisible in all configuration
frontends and thus do not express features. Combined with reverse
dependencies of (visible) features, these express common traits of
individual features and can help reduce clutter in conditional source
code blocks.
menu and choice entries define parts of the menu tree that users

see when using a Kconfig frontend for configuration. A menu is an
abstract group of related features, such as the Drivers node in the
operating system example (Fig. 2.1). A choice offers an alternative
between several child features in an exclusive-or relation. By default,
it is abstract (and, thus, mandatory); when declared as optional it
becomes a concrete feature that can be enabled and disabled.

Kconfig frontends such as kconfig-qconf or kconfiglib2 store the
user-provided configuration in a .config file. Each line corresponds
to a single config entry; however, the .config file only provides values
for entries whose dependencies are satisfied. Each user-configurable
feature (and invisible entry) with satisfied dependencies has an as-
sociated value in the .config file, and features (and entries) whose

2 https://github.com/ulfalizer/Kconfiglib

https://github.com/ulfalizer/Kconfiglib
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dependencies are not met do not. Thus, even if Kconfig has not been
designed with product line engineering in mind, extraction of feature
vectors from .config files is viable.

Listing 2.3 shows a Kconfig definition of the feature model defined
in Fig. 2.1. For details, please refer to the language specification3. Note
that, just like UVL, Kconfig does not support performance attributes.

2.5 machine learning

As stated earlier, rather than relying on manual annotation by a do-
main expert, developers can also employ machine learning algorithms
for automatic generation of performance models, or use a combination
of machine learning and domain knowledge.

Of course, machine learning algorithms do not come up with perfor-
mance models out of thin air. In order to be usable for this task, they
must have access to training data consisting of product line configu-
rations (feature vectors) X = {x⃗1, . . . , x⃗m} and performance attributes
(e.g. binary size or processing throughput) Y = {y1, . . . , ym}. Each pair
(x⃗j, yj) describes a configuration (benchmark input) x⃗j ∈ Rn and the
corresponding performance attribute (benchmark output) yj ∈ R. In
cases where the index in the sets X and Y is not relevant, (x⃗, y) refers
to any pair of matching benchmark data. The variable xi refers to the
i-th feature vector element (the i-th configurable feature), regardless
of its concrete value.

From X and Y, machine learning algorithms infer a model func-
tion f : x⃗ → y that ideally behaves just like the manually specified
performance prediction models examined earlier. Some algorithms
require a user to provide the model structure (e.g. a function template
or a neural network layout); others are capable of generating it by
themselves and only require training data as input. In both cases,
users may be able to configure training hyper-parameters that affect e.g.
trade-offs between model accuracy and model complexity.

Machine learning is a popular research field, with applications as
diverse as anomaly detection in time series, identification of people in
images, or generating media from text prompts. My own work only
touches a small part of that, namely learning to predict individual
numeric performance attributes from numeric (and, in Chapter 7,
categorical) feature vectors. While anomaly detection and computer
vision will come into play later, they are not relevant for performance
model generation, and therefore not within the scope of this chapter.

Note that I only consider machine learning methods and models
that predict a single performance attribute. By combining several
models (e.g. one for hardware cost and one for binary size), users
can still obtain integrated performance models that predict multiple
attributes, such as the one shown in Fig. 2.2. I will also leave out

3 https://kernel.org/doc/html/latest/kbuild/kconfig-language.html

https://kernel.org/doc/html/latest/kbuild/kconfig-language.html
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Listing 2.3: Kconfig model for a sample operating system product line.

choice arch

bool "Architecture"

config avr

bool "AVR"

config msp430

bool "MSP430"

config arm

bool "ARM"

endchoice

choice stack_guard

bool "Stack Guard"

optional

depends on msp430 || arm

config guard_halt

bool "Halt System on Stack Overflow"

config guard_reset

bool "Reset System on Stack Overflow"

endchoice

menu "Drivers"

config spi

bool "SPI"

config i2c

bool "I2C"

config uart

bool "UART"

config uart_rx_buf

int "RX Buffer"

default 32

range 0 256

range 0 64 if avr

depends on uart

endmenu
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string features – in my experience, these generally refer to attributes
that do not influence system performance, such as compiler paths or
component identifiers. Hence, x⃗ ∈ Rn holds for all feature vectors in
this chapter.

With these criteria in mind, two kinds of machine learning algo-
rithms are especially interesting: least-squares regression and regres-
sion trees. Both predict a single output variable from numeric input
variables and use model structures with limited complexity. Also,
both have been used for SPL performance prediction in the past.
Least-squares regression is closely related to feature- and variant-wise
annotations; it relies on a fixed, user-provided model structure. Regres-
sion tree learning algorithms build the model structure from training
data and expose hyper-parameters to limit its complexity.

As it relies on user-provided model templates, least-squares regres-
sion alone is not a suitable solution for RQ3 (“. . . without requiring
manually provided domain information or model structure”). It is,
however, useful as an evaluation target, and – as we will see in the
next chapter – it is also possible to extend least-squares regression so
that it learns the structure by itself.

The remainder of this section covers both learning algorithms in
detail. It also presents a lookup table model that is not useful for
performance prediction of configurations that were not present in
training data, but will prove helpful when it comes to putting the
complexity and accuracy of least-squares regression, regression forests,
and other models into perspective.

2.5.1 Least-Squares Regression

Broadly speaking, regression analysis is a machine learning method
that adjusts (fits) weights β⃗ in a function template f (x⃗) so that f (x⃗) ≈ y
for training data pairs (x⃗, y) [DS98]. It does not build the function
template itself, but relies on users or pre-processing algorithms to
provide it.

Regression analysis algorithms achieve this by minimizing the loss
of the error term ε = y− f (x⃗). Loss represents prediction uncertainty
and thus model error. In least-squares regression, it is the eponymous
Sum of Squared Residuals (SSR) ∑i ε2

i .

SSR( f , X, Y) =
m

∑
i=1

(yi − f (x⃗i))
2 (2.1)

The method for adjusting β⃗ in the learning process depends on the
regression algorithm in question and the function template. These
also decide whether the loss of the fitted output function really is a
global minimum in the

⃓⃓⃓
β⃗
⃓⃓⃓
-dimensional plane of functions f (x⃗). If

it is a global minimum, the resulting weights β⃗ are guaranteed to
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give optimal predictions with the provided function template on the
available training data. Otherwise, there might be a different set of
weights β⃗ that gives a better fit with lower model error.

Algorithms

The function template f (x⃗) = β0 + ∑n
i=1 βixi is a special case that is

also known as Linear Regression. Here, the function f and the loss
function SSR are differentiable. By setting the partial derivatives of
SSR to zero and solving for β⃗, anyone – including computer algorithms
– can find weights that correspond to a global minimum of the loss SSR.
Hence, in linear regression, the resulting weights β⃗ are guaranteed to
provide an optimal fit on the provided training data.

Some non-linear function templates can be handled in the same
manner. When working with arbitrary function templates, though, f
and SSR may not be differentiable – or solving for β⃗ is not feasible
due to an insufficient amount of available computing resources. In this
case, a common approach is approximating β⃗ via gradient descent.

In a nutshell, given some values for β⃗, this method computes its
gradient on SSR( f , X, Y) – so, the direction of change that corresponds
to the steepest increase of model loss. Adjusting β⃗ in the inverse
direction decreases it and thus reduces loss. Afterwards, a gradient
descent algorithm computes a new gradient using the updated β⃗

values, and continues until the algorithm converges (i.e., the loss
reduction from adjusting β⃗ is below a user-defined threshold) or
another stop criterion (e.g. maximum number of iterations, or change
in β⃗ between consecutive iterations below threshold) has been reached.

While this works with arbitrary functions, it has limitations that
users must be aware of. Most prominently, as gradient descent approx-
imates the differential of the loss function and adjusts β⃗ in steps rather
than working with a continuous and differentiable function, there is a
risk of not converging within a limited time or ending up in a local
rather than a global minimum of the loss function. It also requires
users to declare initial values for β⃗, and may be non-deterministic e.g.
if the initial β⃗ is random. In this thesis, the algorithm always starts
with β⃗ = 1⃗.

Nevertheless, when users are aware of these limitations, least-
squares regression can be a powerful machine learning algorithm.
It has been used successfully for numerous tasks in the past, includ-
ing performance models for software product lines with a custom
pre-processing algorithm for function template generation [Sie+

15].
Finally, Symbolic Regression is an extension that is capable of coming

up with function templates on its own. It uses genetic algorithms
to combine function snippets into a function template that balances
prediction accuracy and function complexity. This enables it to, for in-
stance, determine basic natural laws from empiric observations [SL09].
However, it is prone to overfitting: it tends to learn training data by
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benchmark # 1 2 3 4 5 6 7 8 9 10 11 12

x1 (AVR) 1 1 1 1

x2 (MSP430) 1 1 1 1

x3 (ARM) 1 1 1 1

x4 (Halt)

x5 (Reset)

x6 (SPI) 1 1 1

x7 (I2C) 1 1 1

x8 (UART) 1 1 1

y (Size [kB]) 18 15 14 23 22 20 18 17 17 17 17 18

Table 2.1: Excerpt of configurations and corresponding kernel sizes for a
sample operating system product line. Each row describes a config-
uration variable xi or performance attribute y. Empty cells indicate
disabled features (0). Configurations 13 through 24 (not shown)
correspond to 1 through 12 with Halt enabled and a size of y + 4.
Configurations 25 through 36 (not shown) correspond to 1 through
12 with Reset enabled and a size of y + 4.

heart rather than expressing the underlying behaviour [Ray+
19]. This

can already happen in low-dimensional configuration spaces and is
exacerbated by noisy data [FBS18]. Considering these limitations, and
that I am not aware of researchers applying symbolic regression to
performance model generation, I will not go into further detail here.

Example

Assume that we have benchmarked our sample operating system
product line and obtained the results shown in Table 2.1. Note that
this is a deliberately simplified benchmark example that is only meant
to illustrate the relation between least-squares regression, performance
models, and feature- and variant-wise annotation. The benchmark re-
sults are not suitable in practice, as they do not contain configurations
where more than one driver is enabled. Thus, learning algorithms
cannot determine whether driver features interact with each other e.g.
due to shared code.

As noted earlier, the function template must be provided by the
user or a pre-processing algorithm. In this case, we use a simple
pre-processing algorithm which assumes that each boolean feature
contributes to the modeled performance attribute, and that there are
no constant components and no feature interaction. So, given eight
boolean features x1 to x8, the function template is f (x⃗) = ∑8

i=1 βixi.
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After fitting, e.g. using Python3’s scipy.optimize.least_squares,
and rounding β⃗ to kilobytes, the result is β⃗ = (18, 14, 14, 4, 4, 4, 3, 3).
When transformed to feature-wise annotations, this means that AVR,
MSP430 and ARM result in a base kernel size of 18, 14, and 14 kB,
respectively. Halt and Reset contribute 4 kB each, and the SPI, I2C and
UART features contribute 4, 3, and 3 kB.

This does not align with the observations shown in Table 2.1. Com-
mon reasons for this kind of model error are noisy data and unsuitable
function templates. In this case, it is the latter: as we have already
seen in Fig. 2.2, there are feature interactions between architecture
selection and driver code, so a pure feature-wise annotation template
is insufficient.

So, let us assume that a more sophisticated pre-processing algorithm
has identified feature interactions in the product line, and generated
the function template f (x⃗) = ∑5

i=1 βixi + ∑3
i=1 ∑8

j=6 βi,jxixj. Now, βi
corresponds to feature-wise attributes, and βi,j to the interaction be-
tween features xi and xj. After fitting this function, β⃗ is nearly identical
to the model shown in Fig. 2.2. The only difference is that β⃗ annotates
Halt and Reset with 4 kB each instead of the parent Stack Guard fea-
ture – which is not surprising, as Table 2.1 does not contain a feature
vector component for Stack Guard.

Limitations

The lack of Stack Guard is a deliberate omission that is motivated
by an important limitation of least-squares regression analysis: the
configuration options that make up x⃗ must be independent variables.
If this is not the case, e.g. because a pair of features is not independent,
the model may fail to converge or the fitted weights may be bogus.

Assume that we had introduced a feature x9 and weight β9 for the
Stack Guard feature, so f (x⃗) = β1x1 + · · ·+ β8x8 + β9x9. The variables
(x4, x5, x9) are not independent due to x4 ∨ x5 ⇒ x9 and x9 ⇒ x4 ⊻ x5,
so x9 = x4 + x5. Attempting to fit such a function template may not
provide a useful model. Although a least-squares algorithm may come
up with the expected result of β4 = 0, β5 = 0, β9 = 4 when fitting the
model, it might just as well output β4 = 14, β5 = 14, β9 = −10 or any
other set of weights that satisfies the following equations.

β4x4 + β5x5 + β9(x4 + x5) = 0 if x4 = 0∧ x5 = 0

β4x4 + β5x5 + β9(x4 + x5) = 4 if x4 = 1 ⊻ x5 = 1

The first one is always true. The second one can be transformed as
follows.
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β4 + β9 = 4

β5 + β9 = 4

As this is a system of two equations and three free variables, it has
an infinite number of solutions.

So, least-squares regression is not a hands-off approach. Users or pre-
preprocessing algorithms must provide a suitable template function,
and they must leave out configuration variables (features) that depend
on other variables.

2.5.2 Regression Trees

In contrast to least-squares regression, decision tree-based machine
learning algorithms come up with the model structure by themselves.
Users need only provide data and optional training hyper-parameters
for maximum tree height and other accuracy versus complexity trade-
offs. In some cases, they must also ensure that input variables are
pair-wise independent; however, this is not a general requirement.

A decision tree is a binary tree in which each non-leaf node corre-
sponds to a boolean condition such as “is it raining?” or “x2 ≤ 3”. Leaf
nodes correspond to output values such as “bring an umbrella” or
“y = 23”. Decision trees that predict non-numeric classes (e.g. security
attributes) are also referred to as classification trees. Decision trees
that predict numeric values are also known as regression trees. This
section presents common data structures and learning algorithms that
will also serve as related work for evaluation purposes later on.

Classification and Regression Trees

Classification and Regression Trees (CART) and the CART learning al-
gorithm are one of the oldest decision tree-based machine learning
methods, dating back to 1984 [Bre+

84]. As the name suggests, CART
can be used both for classification (categorical output variable y) and
regression (y ∈ R). This thesis only uses the regression part, hence the
following definitions apply.

Definition 2.5.1 A CART is a binary tree that expresses a piecewise
constant function f : Rn → R. Each non-leaf node holds a decision
“xi ≤ z” for some index i ∈ {1, . . . , n} and threshold z ∈ R, and each
leaf node holds an output value y ∈ R.

Definition 2.5.2 For a CART f , decision( f ) = ⟨i, z⟩ indicates that its
root node holds the decision “xi ≤ z”. child( f , y) = f ′ refers to the
sub-tree f ′ for xi ≤ z, and child( f , n) = f ′′ refers to the sub-tree f ′′

for xi > z. If the root node is a leaf node annotated with the value y,
decision( f ) = ⊥ and value( f ) = y.
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x9 ≤ 0

4 kB0 kB

y n

Figure 2.3: CART model for predicting the influence of Stack Guard (x9) on
operating system kernel size. Each leaf holds a prediction value
for the corresponding system configuration.

For example, Fig. 2.3 shows a CART model f that predicts the
influence of Stack Guard (x9) on kernel size, ignoring all other fea-
tures for the sake of simplicity. In this case, decision( f ) = ⟨1, 0⟩,
value(child( f , y)) = 0, and value(child( f , n)) = 4.

The learning algorithm builds the tree structure in a top-down man-
ner by greedily adding decision nodes that minimize the loss function,
which is again the SSR (see Equation 2.1). This way, it recursively
refines the tree until a stop criterion has been reached.

As usual, model generation starts out with a set of n-dimensional
feature vectors X = {x⃗1, . . . , x⃗m} and corresponding performance
attributes (benchmark results) Y = {y1, . . . , ym}. To simplify the syntax
for splitting observations and feature vectors, let the set S contain pairs
(x⃗j, yj) of feature vectors and corresponding observations, and define
the following shortcuts.

S = {(x⃗1, y1), . . . , (x⃗m, ym)} (2.2)

arithmetic mean µ(S) =
1
m

m

∑
i=1

yi (2.3)

standard deviation σ(S) =

√︄
1
m

m

∑
i=1

(yi − µ(S))2 (2.4)

loss function SSR( f , S) =
m

∑
i=1

(yi − f (x⃗i))
2 (2.5)

unique values of xi Vali(S) = {xi | (x⃗, y) ∈ S} (2.6)

With these shortcuts, the CART learning algorithm works as de-
fined in Algorithm 1 [Bre+

84]. The following list outlines the model
generation steps in a less formal but otherwise identical manner.

1. If a stop criterion is satisfied: return a leaf node using the mean
of observed data µ(S) as model value. Common stop criteria are:

a) ∀x⃗, x⃗′ ∈ S : x⃗ = x⃗′ (there is nothing left to decide on), or

b) tree depth has exceeded a user-provided threshold Td, or

c) |S| < Tm for a user-provided threshold Tm, or

d) σ(S) < Tσ for a user-provided threshold Tσ.
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Algorithm 1 Build a CART from observations S.

function BuildCART(S)
f ← new CART
if stop criterion satisfied then

decision( f )← ⊥
value( f )← µ(S)
return f

for i ∈ {1, . . . , n} do
for z ∈ Vali(S) do

Si,z,y ← {(x⃗, y) ∈ S | xi ≤ z}
Si,z,n ← {(x⃗, y) ∈ S | xi > z}
SSRi,z ← SSR(x⃗ ↦→ µ(Si,z,y), Si,z,y)

+ SSR(x⃗ ↦→ µ(Si,z,n), Si,z,n)

⟨i, z⟩ ← argmin(⟨i, z⟩ , SSRi,z)

decision( f )← ⟨i, z⟩
child( f , y)← BuildCART(Si,z,y)

child( f , n)← BuildCART(Si,z,n)

return f

2. For each feature xi, and each unique value z of xi in S: Split S
into partitions Si,z,y and Si,z,n so that Si,z,y only contains entries
with xi ≤ z and Si,z,n only contains entries with xi > z, and
calculate the model error incurred by splitting S on “xi ≤ z”:
SSRi,z = SSR(x⃗ ↦→ µ(Si,z,y), Si,z,y) + SSR(x⃗ ↦→ µ(Si,z,n), Si,z,n).

3. Find the pair xi, z with the lowest loss SSRi,z and transform it
into a decision node “xi ≤ z”.

4. Repeat recursively with Si,z,y (left child) and Si,z,n (right child).

The user-provided hyper-parameters Td, Tm and Tσ affect the trade-
off between model accuracy and model complexity. Querying a CART
(i.e., calculating f (x⃗)) consists of simply following the decision nodes
from the root until reaching the leaf node that contains the function
output. Algorithm 2 gives a formal definition of this. While one might
argue that CART are sufficiently straightforward to be understandable
without formal algorithm definitions, we will examine more complex
decision tree learning algorithms later on. Understanding how those
work and how they relate to CART will benefit from using a common
formal framework right from the start.

In contrast to least-squares regression, CART do not associate in-
dividual features or feature pairs with weights. Instead, each leaf
node (i.e., each path through the tree) defines a sub-set of system
configurations and associates it with a constant performance value.
This goes with the implicit assumption that all configuration variables
that are not part of the path from leaf to root do not affect the pre-
dicted performance value – otherwise, the learning algorithm would
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Algorithm 2 Calculate f (x⃗) for a CART f .

function QueryCART( f , x⃗)
if decision( f ) = ⊥ then

return value( f )

⟨i, z⟩ ← decision( f )
if xi ≤ z then

return QueryCART(child( f , y), x⃗)
else

return QueryCART(child( f , n), x⃗)

have generated decision nodes for them. It is similar to variant-wise
annotation, but with variable-sized feature sets rather than just pairs
of features.

The greedy nature of the learning algorithm also means that influ-
ential features end up in decision nodes close to the root, whereas less
performance-relevant features end up close to leaf nodes or do not
become part of the decision tree at all. So, examining the tree structure
allows users to draw conclusions about the importance of individual
features. Before looking into an example for this, let us first examine
another version of the CART algorithm.

Data-Efficient Classification and Regression Trees

If all features are boolean, CART can be simplified to Data-Efficient Clas-
sification and Regression Trees (DECART) [Guo+

18]. Instead of a piece-
wise constant function Rn → R, these express a piecewise constant
function {0, 1}n → R. This simplifies decision nodes from threshold
comparisons to “is feature i enabled?”

In principle, the CART learning algorithm (Algorithm 1) applies to
DECART unchanged. Finding the optimal split automatically becomes
simpler as there cannot be more than two unique values for each
feature xi, so there is just one sensible split per feature: “xi ≤ 0?”.
However, this leads to Si,0,y containing entries with xi disabled and
Si,0,n containing entries with xi enabled, which counters the intuition
of “y” for enabled features and “n” for disabled features.

Hence, this thesis uses a DECART learning algorithm with partitions
Si,y (xi = 1) and Si,n (xi = 0). The generated decision node asks
“Feature i enabled?” rather than “xi ≤ 0”; the left child covers Si,n and
the right child covers Si,y. The following definitions apply.

Definition 2.5.3 A DECART is a binary tree that expresses a piecewise
constant function f : {0, 1}n → R. Each non-leaf node holds a decision
“xi?” for some index i ∈ {1, . . . , n}, and each leaf node holds an output
value y ∈ R.

Definition 2.5.4 For a DECART f , decision( f ) = ⟨i,⊥⟩ indicates that
its root node holds the decision “xi?”. child( f , y) = f ′ refers to the
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Algorithm 3 Build a DECART from observations S.

function BuildDECART(S)
f ← new DECART
if stop criterion satisfied then

decision( f )← ⊥
value( f )← µ(S)
return f

for i ∈ {1, . . . , n} do
Si,y ← {(x⃗, y) ∈ S | xi = 1}
Si,n ← {(x⃗, y) ∈ S | xi = 0}
SSRi ← SSR(x⃗ ↦→ µ(Si,y), Si,y)

+ SSR(x⃗ ↦→ µ(Si,n), Si,n)

i← argmin(i, SSRi)

decision( f )← ⟨i,⊥⟩
child( f , y)← BuildDECART(Si,y)

child( f , n)← BuildDECART(Si,n)

return f

Algorithm 4 Calculate f (x⃗) for a DECART f .

function QueryDECART( f , x⃗)
if decision( f ) = ⊥ then

return value( f )

⟨i,⊥⟩ ← decision( f )
if xi = 1 then

return QueryDECART(child( f , y), x⃗)
else

return QueryDECART(child( f , n), x⃗)

sub-tree f ′ for xi = 1 (feature enabled), and child( f , n) = f ′′ refers to
the sub-tree f ′′ for xi = 0 (feature disabled). If the root node is a leaf
node annotated with the value y, decision( f ) = ⊥ and value( f ) = y.

Algorithms 3 and 4 show the DECART learning and query algo-
rithms. A comparison to CART (Algorithms 1 and 2) confirms that a
boolean-only configuration space leads to simpler algorithms.

A notable advantage of DECART is that a small amount of random
samples is often sufficient for acceptable model accuracy. For instance,
Guo et al. mention less than 10 % model error when using just 10 · n
random samples for product lines with n boolean features [Guo+

18].
Fig. 2.4 shows a DECART model that has been generated by the

Python3 scikit-learn DecisionTreeRegressor module from a sub-
set of the benchmark results shown in Table 2.1. To make sure that
the resulting tree fits onto a single page, the subset only contains
observations 1 through 12; Stack Guard is always disabled.
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Figure 2.4: DECART model for predicting the kernel size of a sample oper-
ating system product line. Each leaf holds a prediction value for
the corresponding system configuration.

Even such a simple model can already contain helpful information.
For example, the path no AVR→ no SPI→ no UART→ I2C indicates
that it does not matter whether the I2C driver is used on an MSP430

or ARM platform, at least when it comes to binary size. As Fig. 2.1
shows, this is correct.

The top decisions are AVR and SPI, which makes sense: ARM and
MSP430 have a similar binary size footprint, whereas AVR is larger;
and the SPI driver is, on average, also the largest one. So, the decision
tree has indeed placed more influential features closer to the top.

Again, this specific example is deliberately simplified and not useful
for actual prediction of system performance. The input to the learning
algorithm does not contain samples with Stack Guard enabled, and
it also does not contain samples in which more than one peripheral
driver is enabled. So, the learning algorithm had no opportunity to
observe system behaviour with multiple drivers enabled, and as a
consequence of that the regression tree cannot properly predict those
cases. For example, the (incorrectly) predicted kernel size for AVR
with SPI, I2C, and UART drivers enabled is the same as the (correctly)
predicted kernel size for AVR with SPI only (23 kB), even though the
size of these configurations differs by 6 kB.

Note that, when using a pre-processing algorithm for function
template generation rather than manually providing one, this issue
would also have appeared in the least-squares regression example in
the previous section. As usual, a machine learning algorithm rarely
has a chance of being better than its training data. If the input is
garbage, the output will likely be garbage as well.

In general, if practitioners desire a maximum amount of automation
and do not want to provide domain knowledge, they must ensure that
they use a suitable subset of the product line’s configuration space for
training. In this small example, they could simply perform an exhaus-
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Figure 2.5: Regression forest for predicting the kernel size of a sample oper-
ating system product line.

tive state space exploration (i.e., benchmarking all possible products).
Real-world applications rely on an appropriate sampling algorithm
that decides which configurations are benchmarked [Guo+

18]. In the
field of product line engineering, random sampling is wide-spread
and often sufficient [Per+

21].

Regression Forests

The hierarchical nature of decision trees is both their biggest strength
and their biggest weakness. When all features interact with each
other, building a decision tree makes perfect sense as it captures these
interactions. However, when the interaction is limited to subsets of
features, and these subsets are pairwise independent, they must be
replicated over several sub-trees.

For example, the kernel size footprint of the Stack Guard feature is
independent of architecture and driver selection. In order to express
its non-functional behaviour, the tree shown in Fig. 2.4 would need
duplicates of each decision: one for Stack Guard disabled, and one
for Stack guard enabled. So, in the worst case, each new independent
feature doubles the number of decisions that are present in the tree.
This makes the model more complex and harder to interpret.

Ensemble methods offer an approach for solving this challenge.
Rather than using a single estimator f (here: a single decision tree),
they rely on an ensemble F = { f1, . . . , fK} of estimators (here: a forest
consisting of several decision trees). The ensemble’s output is an
aggregate of each estimator’s output, in this case F (x⃗) = ∑K

k=1 fk(x⃗).
Fig. 2.5 shows an example of a DECART-based regression forest for

kernel size prediction. However, this example is purely for illustrative
purposes: I have designed it manually to represent an ideal regression
forest, and did not find a combination of learning algorithm and
hyper-parameters that led to a similarly easy-to-understand model.
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This comes from the fact that learning a forest is considerably more
challenging than learning a single tree. Algorithms must balance
the complexity of individual trees with the complexity of the entire
model, select suitable groups of features for the individual trees, and
avoid overfitting. To manage this, the implementations I am aware of
combine a generic, randomized algorithm with hyper-parameters that
allow for manual fine-tuning of individual algorithm components.

This thesis uses Python3’s xgboost implementation of the Extreme
Gradient Boosting (XGB) algorithm [CG16]. Essentially, it iteratively
builds regression trees that aim to minimize the loss of the entire
forest rather than just the loss of a single tree. When learning an XGB
forest, users can specify several hyper-parameters, including

• number of regressors (trees) K ∈N>0,

• sub-sampling rate r ∈ (0, 1],

• maximum tree depth Td ∈N>0,

• tree complexity penalty γ ∈ R≥0,

• tree weight penalty λ ∈ R≥0, and

• shrinkage η ∈ (0, 1].

The learning algorithm is more complex than CART and DECART,
and methods for building regression forests continue to be an active
research area. However, the details of the algorithm are not relevant
for the contributions presented in this thesis. Hence, this section only
gives a high-level overview of the ideas behind it; refer to Chen and
Guestrin for details [CG16].

XGB starts with an empty ensemble, and iteratively adds K regres-
sors to it. For each regressor, it randomly selects r · n features (where n
is the number of features in the feature vector), and uses an adjusted
CART algorithm to build a regression tree whose decision nodes only
use the selected feature sub-set. This algorithm replaces the loss func-
tion SSR with a regularized variant L that takes the loss of the entire
ensemble into account and penalizes complex models:

L(F , S) =
n

∑
i=1

SSR(F (x⃗i), yi) +
K

∑
k=1

Ω( fk) (2.7)

Here, F represents the current state of the partially assembled en-
semble, including the regression tree that is currently being generated.
The regularization term Ω( f ) calculates the complexity of each tree f
from its number of leaves T and leaf values wt.

Ω( f ) = γT +
1
2

λ
T

∑
t=1

w2
t (2.8)
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When a new tree is complete, the XGB algorithm scales each of
its weights by the shrinkage parameter η. This controls the learning
rate: A low η value reduces the influence of individual trees on model
outcome, thus allowing additional trees to fine-tune the ensemble.

With these methods, regression forests can accurately model com-
plex behaviour. However, especially considering the large number of
trees, this comes at the cost of interpretability. We will see this effect
when comparing prediction methods in Section 7.5.

Linear Model Trees

Up to this point, all regression tree variants have expressed piece-
wise constant functions. While these are well-suited for boolean-only
feature models, they can only approximate the effect of numeric fea-
tures such as RX buffer size in discrete steps. Linear Model Trees (LMT)
address this by extending CART with linear functions in leaf nodes,
thus expressing piecewise linear rather than piecewise constant func-
tions [Qui+

92; Mal+
04].

Definition 2.5.5 An LMT is a binary tree that expresses a piecewise
linear function f : Rn → R. Each non-leaf node holds a decision
“xi ≤ z” for some index i ∈ {1, . . . , n} and threshold z ∈ R, and each
leaf node holds a linear function f ′ : Rn → R.

Definition 2.5.6 For an LMT f , decision( f ) = ⟨i, z⟩ indicates that its
root node holds the decision “xi ≤ z”. child( f , y) = f ′ refers to the
sub-tree f ′ for xi ≤ z, and child( f , n) = f ′′ refers to the sub-tree f ′′

for xi > z. If the root node is a leaf node annotated with the function
f ′′′, decision( f ) = ⊥ and value( f ) = f ′′′.

In contrast to regression trees and forests, LMT appear to be less
common in the product line engineering field. Still, they have been
used to predict software faults based on software quality attributes in
the past [RK16]. In this publication, Rathore and Kumar use the M5’
learning algorithm [WW97]. Again, the details of the M5’ learning
algorithm are not relevant for the contributions presented in this thesis,
so this section only gives a high-level overview.

Similar to xgboost, M5’ starts out with an adjusted CART algo-
rithm: rather than minimizing a loss function, it aims to maximize the
Standard Deviation Reduction (SDR).

SDR( f , S) = σ(S)−
m

∑
i=1

|Si|
|S| · σ(Si) (2.9)

Just like SSR, SDR takes both accuracy and partition size into ac-
count: a small partition with a high error and a large partition with a
low error behave similarly. In fact, the literature indicates that there is
little difference between SSR and SDR [WW97].
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benchmark # 1 2 3 4 5

xUART 0 1 1 1 1

xRX Buffer 0 8 16 32 64

y (RAM [B]) 64 76 84 100 132

Table 2.2: Excerpt of configurations and static memory usage for a sample
operating system product line. Each row describes a configuration
variable xi or performance attribute y. In configurations with UART
disabled, RX Buffer size is zero.

xUART ≤ 0?

68 + xRX Buffer64

y n

Figure 2.6: Linear Model Tree for predicting the static memory usage of a
sample operating system product line. Each leaf holds a constant
value or a linear regression formula.

Once the CART has been built, M5’ transforms sub-trees into linear
functions by means of a bottom-up pruning algorithm. For each sub-
tree (i.e., each non-leaf node), it builds a linear function template that
only considers the variables that are queried within the sub-tree. It then
uses linear regression to fit it on the corresponding observations (i.e.,
the set S that was used to determine the root node of the sub-tree). The
resulting function is also subject to pruning: the M5’ algorithm greedily
drops function terms that have little influence on the accuracy of the
fitted function. Now, moving from the leaves to the top, it calculates the
prediction error of both the CART-style sub-tree and the corresponding
linear function for each non-leaf node it encounters. If the linear
function’s error is lower, it replaces the sub-tree with a single leaf
node that contains the linear function. In order to simplify algorithmic
notation, this thesis treats each leaf node that still contains a constant
value y after the pruning step as a constant function f (x⃗) = y.

To illustrate the benefit of LMT, let us consider the static RAM usage
of our sample operating system product line. For brevity, we pretend
that it is identical for all architectures, and that the SPI, I2C, and Stack
Guard features do not affect it either. However, the UART driver’s
RX buffer must be placed in memory, so UART buffer size (xRX Buffer)
and whether or not the UART driver is enabled to begin with (xUART)
affect RAM usage as shown in Table 2.2.

Feeding this into an open-source LMT implementation4 results in
the tree shown in Fig. 2.6. We immediately see the linear effect of
buffer size on memory usage, and that it is only relevant if the UART

4 https://github.com/cerlymarco/linear-tree

https://github.com/cerlymarco/linear-tree
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Algorithm 5 Calculate f (x⃗) for an LMT f .

function QueryLMT( f , x⃗)
if decision( f ) = ⊥ then

return value( f )(x⃗)

⟨i, z⟩ ← decision( f )
if xi ≤ z then

return QueryLMT(child( f , y), x⃗)
else

return QueryLMT(child( f , n), x⃗)

driver is enabled. As shown in Algorithm 5, querying an LMT works
just like querying a CART with the additional step of evaluating the
leaf function rather than returning a leaf value.

Just like XGB, the implementation used here supports a variety of
hyper-parameters for balancing model accuracy, complexity, and risk
of overfitting. These include

• maximum tree depth Td,

• the minimum number of samples Tm for splitting (stop criterion:
|S| < Tm), and

• the minimum number of samples Tl per partition that a split
must provide in order to be considered for tree generation (stop
criterion: ∀i, z :

⃓⃓
Si,z,y

⃓⃓
< Tl ∧ |Si,z,n| < Tl).

While all of these serve as stop criteria, Tl also constrains which
partitioning schemes “xi ≤ z / xi > z” are considered during tree
generation. Note that there is an implementation-specific limitation
of Td ∈ {5, . . . , 20}, whereas CART and XGB support Td ∈ N>0.
Likewise, Tm ≥ 6 and Tl ≥ 3; both may also be specified as fractions
of the total number of samples m rather than absolute values.

2.5.3 Lookup Tables

Technically, Lookup Table (LUT) models do not fall under the term of
machine learning. Rather than abstracting from observations, they are
only capable of reproducing observations for known configurations. A
LUT model partitions the training set by feature vector, builds a table
that maps each feature vector x⃗ to corresponding training observations
y, and returns the mean of these observations when asked to predict
the performance of a specific configuration x⃗. If x⃗ is not part of the
training data stored in the lookup table, it returns the mean of all
observations instead.

Let UniqX(S) refer to the unique configurations x⃗ in the training set
S, and let Sx⃗ hold the pairs that correspond to a given configuration x⃗:
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UniqX(S) = {x⃗ | ∃y : (x⃗, y) ∈ S} (2.10)

Sx⃗ = {(⃗v, y) ∈ S | v⃗ = x⃗} (2.11)

With these shortcuts, the LUT model f (x⃗) is defined as follows.

f (x⃗) =

⎧⎨⎩µ(Sx⃗) if x⃗ ∈ UniqX(S)

µ(S) otherwise
(2.12)

Essentially, this is variant-wise feature modeling taken to the ex-
treme: Each product is its own variant, and the model does not learn
common traits or feature-specific attributes. As such, LUT models are
not helpful for understanding performance behaviour, and no better
than a feature-agnostic arithmetic mean for performance prediction of
unseen configurations. However, by construction, they provide a lower
bound on model error. When only evaluated on observations that
were part of the training set, a LUT model’s prediction error precisely
captures the measurement uncertainty within its training data.

Given a collection of machine learning methods, this allows prac-
titioners to determine whether individual algorithms are able to ac-
curately capture product line performance regardless of absolute
error values. For instance, if a benchmark series consists of ten mea-
surements per configuration and there is a large variance between
measurements of identical configurations, the LUT model will have a
high model error. Regardless of modeling method, a machine learning
model has no chance of coming up with results that are better than
the measurement uncertainty. So, even if a method such as CART has
a seemingly high model error, if it is close to LUT model error it is
still as good as the available training data permits.

This concludes definitions and related work for machine learning
methods. Having learned what a machine learning model is and how
it behaves, we are now ready to examine quality metrics that allow for
a quantitative comparison of machine learning models.

2.6 model quality metrics

Performance-aware product line configuration benefits from accurate
and understandable models. In quantifiable terms: product line en-
gineers should strive for models with a low prediction error and,
especially when configuration is done manually, low model complex-
ity. This section presents common metrics for both, and defines the
ones used in the remainder of this thesis.
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2.6.1 Prediction Error

A key question when using a performance prediction model is: given
a configuration x⃗, how close is the model prediction p = f (x⃗) to
actual system performance, i.e., to the performance value y that users
would obtain by building and benchmarking a product with this
configuration? Or, in short: what is the prediction error?

Of course, the concrete configurations x⃗ that users will ask for are
not known in advance – otherwise, engineers could include them in
the benchmark set and would not need a performance model in the
first place. Hence, the established method is to report mean prediction
error for a representative set of configurations [Per+

21]. As this set
validates the model, it is also known as the validation set.

All error metrics presented in this section operate on such a vali-
dation set, and take two related sets of values as input: The ground
truth Y = {y1, . . . , ym}, and model predictions P = {p1, . . . , pm} =

{ f (x⃗1), . . . , f (x⃗m)}.

Error Metrics

Back in Equation 2.1, we have already seen an error measure that
works this way: the SSR loss function. Adjusted for P rather than f
and X, it is defined as follows.

SSR(P, Y) =
m

∑
i=1

(yi − pi)
2 (2.13)

This metric allows for comparing the prediction error of different
models on the same data set, but is unsuitable for comparing models
that were evaluated on distinct data sets. Given one model with
P1 = {1, 2} and Y1 = {2, 3}, and a second one with P2 = {1, 2, 3}
and Y2 = {2, 3, 4}, one might argue that both are equally accurate.
However, as the SSR is a sum of individual deviations, the second
model has a higher SSR.

To avoid this, model evaluation can consider the mean of deviations
rather than their sum, using Mean Square Error (MSE) or Mean Absolute
Error (MAE). These are also known as Mean Square Deviation (MSD)
and Mean Absolute Deviation (MAD), respectively.

MSE(P, Y) =
1
m

m

∑
i=1

(yi − pi)
2 (2.14)

MAE(P, Y) =
1
m

m

∑
i=1
|yi − pi| (2.15)

The former is more sensitive to outliers, and is minimal for models
that use the arithmetic mean for prediction, such as the LUT model.
The latter is minimal for models that use the median for prediction,
and easy to interpret: given a prediction p and mean absolute error
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x, on average, the actual performance value will be in the range
[p− x, p + x].

These metrics are useful when comparing different models that aim
to predict the same performance property for the same product line.
They can lead to confusion when looking at different performance
attributes or product lines, though: while an MSE or MAE of a few
seconds would be excellent when predicting the duration of a complex,
multi-hour number crunching algorithm, it would not be helpful for
latency prediction of a driver function call with a typical duration in
the hundred milliseconds range.

Mean Absolute Percentage Error (MAPE) resolves this inconvenience
by calculating model error relative to ground truth values: a model
that consistently reports 50 % too much or too little (pi = 1

2 yi or
pi =

3
2 yi) has a MAPE of 50 %. However, it is only defined for non-

zero observations (∀i : yi ̸= 0).

MAPE(P, Y) =
100 %

m

m

∑
i=1

⃓⃓⃓⃓
yi − pi

yi

⃓⃓⃓⃓
(2.16)

Symmetric Mean Absolute Percentage Error (SMAPE) also indicates the
relative deviation between prediction and observation. Unlike MAPE,
it has a fixed range between 0 and 200 %, allowing for an easier
graphical comparison during model evaluation at the cost of non-
linear behaviour. It can only be computed if all validation set entries
have a non-zero prediction or ground truth (∀i : |pi|+ |yi| ̸= 0).

SMAPE(P, Y) =
100 %

m

m

∑
i=1

|pi − yi|
|pi |+|yi |

2

(2.17)

MAPE and SMAPE have two important differences. First, MAPE
behaves the same for over- and undershoot, whereas SMAPE gives
different results for the same relative deviation: a consistent overshoot
of 50 % (pi =

3
2 yi) gives a SMAPE of 40 %, whereas an undershoot of

50 % (pi =
1
2 yi) gives a SMAPE of 67 %. Second, due to its unbounded

nature, MAPE can be severely influenced by outliers with very high
prediction errors. If one out of one hundred predictions is off by a
factor of one thousand and all other predictions are spot-on, MAPE is
999 %, whereas SMAPE is just 2 %. This is most relevant when working
with models that attempt to extrapolate system behaviour (e.g. regres-
sion analysis) rather than just interpolating between measurements
(e.g. CART).

The majority of performance model evaluations in the product line
engineering literature uses MAE and MAPE5 to assess prediction
accuracy [Per+

21]. As this thesis focuses on machine learning models
that work reliably on more than just a single product line, it uses

5 Note that the referenced survey uses different terms than this thesis: “Mean Relative
Error” subsumes MAE and MAPE, whereas “Mean Absolute Error” refers to the sum
of deviations rather than the mean of deviations.
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relative error metrics. Evaluation results report MAPE where possible,
and fall back to SMAPE if MAPE cannot be visualized properly.

Cross Validation

A product line with n boolean features has up to 2n valid configura-
tions, making exhaustive benchmarks of product lines with hundreds
or thousands of features impractical. Hence, predicting the perfor-
mance of configurations that were not part of the training set is a
key application of performance models, and error metrics must ac-
knowledge this fact. Otherwise, there would be little need for machine
learning research, as the LUT model would already provide optimal
prediction results for SSR and MSE, and a LUT model that uses me-
dian rather than mean would provide optimal prediction accuracy for
MAE, MAPE, and SMAPE. For performance attributes with no mea-
surement uncertainty (e.g. binary size), all LUT error metrics would
be zero.

This can also happen unintentionally. Complex models combined
with sparse and possibly noisy training data can behave like a LUT
model rather than learning underlying characteristics, making them
unsuitable for prediction of previously unseen configurations. This is
known as overfitting [DS98].

Hence, evaluating models on configurations that were not present
in the training data set is crucial for obtaining reliable error metrics.
At the same time, it is desirable to use as many benchmark results
as possible for training and validation. The configuration space is
often too large for exhaustive benchmarks, and distinct training and
validation sets further reduce the usable amount of configurations.

Cross validation manages to do both: it uses all available benchmark
results for training and validation, while at the same time ensuring
that training and validation set are distinct. The key idea is to generate
several pairs of training and validation sets from the available bench-
mark results, train a separate model on each pair, and use the average
prediction error of all models for evaluation [Koh95]. This way, it uses
each benchmark result for training and validation, while ensuring that
each model is only evaluated on data points it was not trained on.

As before, let S = {(x⃗1, y1), . . . , (x⃗m, ym)} be the set of observations,
using an arbitrary (but fixed) order. 10-fold cross validation generates ten
deterministic splits, or folds, each of which uses 90 % of observations
as training set St,k and the remaining 10 % as validation set Sv,k. For
k ∈ {1, . . . , 10}, training and validation set are defined as follows.

St,k = {(x⃗i, yi) ∈ S | i mod 10 ̸= k− 1} (2.18)

Tv,k = {(x⃗i, yi) ∈ S | i mod 10 = k− 1} (2.19)

10-fold cross validation uses each training set to train a separate
model, and stores its predictions on the corresponding validation set.
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Figure 2.7: Training and validation sets in 4-fold cross validation with 100

samples. Each line shows a separate model with training set (blue,
filled circles) and validation set (red, empty circles).

The first one uses St,1 and Sv,1, the second one St,2 and Sv,2, and so
on. In all cases, St,k ∪ Sv,k = S and St,k ∩ Sv,k = ∅. This results in a
ground truth Y that covers the entirety of available benchmark results
– however, each prediction pi from the set P has been made by a model
that did not observe the corresponding ground truth entry yi during
training.

Fig. 2.7 illustrates the training and validation partitions for a simpli-
fied variant with k ∈ {1, . . . , 4} (so, 4-fold cross validation). The first
model (k = 1) uses observations 4, 8, 12, . . . , 100 for validation and all
others for training. The second model uses observations 1, 5, 9, . . . , 97
for validation and all others for training, and so on.

Feature-Aware Cross Validation

This cross validation method works if all benchmarks measure distinct
configurations. For properties such as binary size, this is a sound
assumption: no matter how often the program is compiled, binary
size is always the same, so a single compilation benchmark for each
configuration is sufficient.

Other performance attributes, such as latency of a Linux application
or energy usage of an embedded board, are influenced by uncontrolled
environmental effects (noise). Here, repeated benchmarks with the
same configuration may yield different results, and it is important that
machine learning algorithms can distinguish between deviations due
to noise and deviations due to configuration changes. Therefore, it is
good practice to benchmark each configuration several times.

When using cross validation in this case, the training and validation
sets still contain distinct configuration/observation pairs. However,
a configuration in the validation set may already have been present
in the training set with a slightly different benchmark result, thus
defeating the purpose of cross validaton.

Feature-aware 10-fold cross validation works around this by building
partitions not based on the order of observations, but on distinct fea-
ture vectors x⃗. In each split, 90 % of configurations (and corresponding
observations) are part of the training set, and 10 % are part of the vali-
dation set. With the set of unique configurations Xuniq = {x⃗1, . . . , x⃗j},
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using an arbitrary but fixed order, training and validation sets are
defined as follows.

St,k =
⋃︂

{x⃗i∈Xuniq|i mod 10 ̸=k−1}
Sx⃗i (2.20)

Tv,k =
⋃︂

{x⃗i∈Xuniq|i mod 10=k−1}
Sx⃗i (2.21)

Thus, for each unique configuration x⃗, either all corresponding
observations are part of the training set or all observations are part
of the validation set. Unless noted otherwise, all evaluations in this
thesis use feature-aware 10-fold cross validation.

2.6.2 Complexity

The interpretability of a model depends on the number of questions a
user must consider to determine model output for a specific product
line configuration, and the difficulty of determining how changing
individual features would affect it. In contrast to prediction error,
I am not aware of a common method that allows for quantitative
interpretability evaluation of least-squares regression and regression
tree-based models. While there are quantitative metrics that allow
for comparing arbitrary machine learning models (e.g. Rademacher
complexity [BM01]), they focus on learning ability rather than the
understandability of concrete models.

Therefore, this thesis uses model complexity as a proxy variable for
interpretability. For least-squares regression, the number of function
terms (i.e., the number of weights

⃓⃓⃓
β⃗
⃓⃓⃓
) appears to be a common com-

plexity metric [McC11]. For a tree or forest f , it is the number of leaves
(also known as terminals or weights) #w f [Ste09; LCG12].

While the number of leaves captures the number of product config-
urations that a regression tree-based model has learned, it does not
capture the work that users have to invest when answering “what
if?” questions. For these, they also need to look at non-leaf nodes
within the tree, and determine which branch they want to take. In this
context, it makes sense to consider the total number of nodes #n f .

In binary trees and forests, this is a function of the number of
leaves: #n f = 2#w f − 1. So, when only dealing with binary trees, it
does not matter whether complexity metrics use the number of leaves
or the total number of nodes, so long as the complexity calculation
method is consistent. However, in this thesis, we will also examine
non-binary tree structures with #n f ≤ 2#w f − 1. Therefore, I define
tree complexity as the total number of nodes #n f .

LMT combine regression trees and least-squares regression: each
leaf holds a linear regression formula f with weights β⃗ f . A constant
leaf value y is expressed as a function f (x⃗) = y with β⃗ f = (y) and
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does not require special treatment. Hence, LMT complexity depends
on the number of non-leaf nodes #i f and the total number of weights⃓⃓⃓
β⃗ f

⃓⃓⃓
in the set of leaf functions F . With these considerations in mind,

this thesis uses the following complexity metrics.

• Least-squares regression formula f : number of weights
⃓⃓⃓
β⃗ f

⃓⃓⃓
.

• Regression tree or forest f , e.g. CART, DECART, XGB: number
of nodes #n f .

• Regression tree f with set of leaf functions F , e.g. LMT: number
of non-leaf nodes plus number of weights in leaf functions:
#i f + ∑g∈F

⃓⃓⃓
β⃗g

⃓⃓⃓
.

• LUT model with distinct configurations UniqX(S): number of
configurations it has learnt by heart: |UniqX(S)|+ 1.

2.7 evaluation targets

In the past decades, dozens of software product lines and SPL-like
software products have been subject to performance modeling re-
search, ranging from compression algorithms over database systems
and related server applications to video encoders and other soft-
ware [Per+

21]. Predicted performance attributes often include latency
and throughput, memory usage, and binary size. Evaluation targets
typically exhibit either compile-time or run-time variability; combina-
tions of both are rare. Evaluations of workload-dependent attributes
such as latency and throughput typically consider the workload (e.g.
video encoder input file or performed database queries) to be constant.

In line with these common evaluation methods, this thesis relies on
five Kconfig-based software projects as evaluation targets for perfor-
mance models: three with compile-time variability, one with run-time
options, and one with both. Unless noted otherwise, all benchmarks
use random sampling and run no more than one benchmark per prod-
uct line configuration. Random sampling is used by the majority of
performance modeling research works, and has been shown to be
sufficient in many cases [Per+

21; Guo+
18]. Repeated measurements of

the same configuration are helpful for performance attributes affected
by run-time effects, but not required for compile-time attributes such
as binary size.

One of the goals of product line engineering is that each valid config-
uration results in a working product. In practice, this may be violated,
especially when dealing with software projects that behave like an
SPL, but are not developed according to SPLE principles. While there
is a growing body of research related to removing such deficiencies in
the variability model and improving the relationship between feature
model and source code implementation in general [Tar+

11], this issue
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product line boolean choice numeric samples

Busybox 1,018 997 7 25 32,000

Kratos 198 183 5 137 30,000

Multipass 138 86 6 8 10,000

x264 9 5 2 4 16,800

resKIL 106 0 6 1 14,884

resKIL (latency) 3.82 · 106

Table 2.3: Number of features by type and sample counts of evaluated prod-
uct lines. The Boolean column indicates total number of features
(left) and number of features that are not part of a choice (right).

is not within the scope of this thesis. Hence, all configurations exam-
ined in this thesis refer to working products; configurations that lead
to compilation errors or other issues are silently discarded.

Table 2.3 shows the number of boolean and numeric features, the
number of groups of alternative features (Kconfig choice entries), and
the number of samples for each target. The left boolean column counts
all boolean features, whereas the right one only considers boolean
features that are not part of a choice entry. resKIL has two data sets
for different types of performance attributes – however, the number
and distribution of features is identical for both. I will now present
the evaluation targets in detail.

2.7.1 Compile-Time Variability

The busybox project6 provides a collection of common UNIX utili-
ties within a single multi-call binary. It is tailored towards resource-
constrained embedded Linux appliances. As such, it is extensively
configurable: each utility can be separately enabled or enabled with
only a sub-set of features, and many global attributes such as buffer
sizes are configurable as well. Specifically, we are looking at busybox
version 1.35.0, with binary size and static RAM usage (combined data
and bss segment size) as performance attributes.

I am not aware of related works that use busybox for evaluation.
While Queiroz, Berger, and Czarnecki aim to predict defects in busy-
box feature implementations, their approach is not applicable to per-
formance modeling [QBC16].

Kratos is a research operating system developed at the former Em-
bedded System Software group at TU Dortmund [Bus19]. It has been
designed from the ground up with variability in mind, and hence
offers a wide range of configuration options, including several dozen
integer and string features used for fine-grained control over hardware

6 https://busybox.net

https://busybox.net
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Figure 2.8: Observed performance attributes in compile-time variability
benchmarks. Box segments indicate quartile boundaries.

components. It supports two MSP430-based microcontroller families
(MSP430FR and CC430) and ARM (Raspberry Pi). Performance at-
tributes are similar to busybox: ROM usage (text and data segment
size) and static RAM usage (data and bss segment size).

Multipass7 is a library operating system that I developed over the
past years to help with my research. It is designed with hardware
evaluation and energy measurements in mind, and hence deliberately
leaves out sources of non-determinism such as preemptive multi-
tasking. Still, it supports a variety of architectures (AVR, MSP430FR,
ARM Cortex R and M, TriCore), peripherals, and test applications, all
of which are exposed as configurable features. Again, performance
attributes are ROM usage (text and data segment size) and static RAM
usage (data and bss segment size).

Fig. 2.8 shows the distribution of observed performance attributes in
these three evaluation targets as box plots that indicate quartile bound-
aries and outliers. Note that the individual plots use different X axis
scales for better visualization. Busybox exhibits significant variance,
with ELF size and RAM usage ranging from a few kB to several MB,
and is therefore a prime candidate for performance prediction models.
While the majority of Kratos and Multipass resource requirements falls
in a range less than 10 kB wide, the high amount of outliers indicates
that they, too, will likely benefit from prediction models.

2.7.2 Run-Time Variability

The x264 software library8 provides a well-known open source H.264

video encoder. It offers numerous boolean and numeric tunables that
affect the trade-off between video quality, encoder speed, and output

7 https://ess.cs.uos.de/git/bf/multipass

8 https://www.videolan.org/developers/x264.html

https://ess.cs.uos.de/git/bf/multipass
https://www.videolan.org/developers/x264.html
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file size. Here, the goal is to predict how a sub-set of encoder options
affects encoding duration and output file size, using ffmpeg version
4.3.4 and libx264 revision 3011 (commit cde9a93).

The input file for encoding is constant, which is in line with other
works that use x264 for evaluation purposes [Zha+

15; Guo+
18; Sie+

15;
Sie+

13]. Three of those only examine the influence of boolean fea-
ture toggles, whereas Siegmund et al. consider eight boolean and 13

numeric features, though without documenting the precise feature
set [Sie+

15]. In this thesis, the configuration set also covers boolean
and numeric features, including tunables such as output resolution,
bit rate, and the number of encoding threads.

I built a hand-crafted Kconfig file to capture the variability and
constraints in x264’s run-time options, and implemented tooling that
explores the configuration space by means of random sampling with
neighbourhood exploration. This is an extension of random sampling
that, for each random sample, also performs benchmarks where a
single feature has been changed. For a boolean feature, this means
benchmarking a configuration where this specific feature has been
toggled. For a numeric feature, it benchmarks five configurations
where this specific feature has been configured to one of five values
taken at equidistant points between the feature’s minimum and max-
imum value. Additionally, as encoding duration is affected by the
background load of the benchmark machine in addition to encoder
configuration, each x264 benchmark runs three times.

resKIL is an agricultural AI product line that will be explained in
detail in Section 8.1. It models a computer vision product for image
classification (e.g. determining which type of fruit is present in an
image) and semantic segmentation (locating and identifying image
components, e.g. obstacles and wheat). The product line uses vari-
able hardware platforms, AI models, model optimizations, inference
frameworks, and batch size.

Hardware platforms range from low-power Cortex-A single-board
computers to GPU-accelerated Jetson Nano and Xavier boards. Batch
size indicates the number of images that is processed in a single oper-
ation – depending on AI model and framework, increasing the batch
size can significantly increase throughput with only small changes
to latency. Performance attributes are model size, inference latency,
inference throughput, and memory usage.

resKIL data acquisition also systematically explores the configura-
tion space, but achieves this by iterating over an exhaustive list of
feature configurations. Each benchmark of a specific configuration
populates two data sets. First, it measures the per-image latency of
running inference on several dozen images, ignoring the first opera-
tion to account for warm-up effects such as memory allocation. The
results end up in the latency row of Table 2.3; the generic resKIL row
covers the remaining performance attributes.
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Figure 2.9: Observed performance attributes in run-time variability bench-
marks.

It also measures system memory usage before loading the AI model
and after the last inference operation, and treats the difference between
those as memory overhead of the inference operation – so, for each
set of several dozen latency measurements, there is a single memory
usage data point. This crude method is necessary to account for the
memory usage of implementations using offloading, e.g. by moving
operations to a GPU or to specialized tensor processing units (TPUs).
The memory used for these offloading engines may be allocated by
system components other than the benchmark script, and hence be
invisible to fine-grained approaches such as malloc tracing.

Afterwards, for each benchmark run, it calculates inference through-
put from batch size and median latency, and stores throughput, mem-
ory usage, and serialized model size in the list of benchmark results.
In the end, this results in two sets of measurements: one for latency,
with several dozen measurements for each distinct configuration, and
one for everything else. Due to time constraints, I only benchmarked
each configuration in the latter set twice. Hence, memory usage data
may be subject to interference by other operating system tasks.

Fig. 2.9 shows the distribution of the observed x264 and resKIL
performance attributes. We see that all attributes have a high variance,
often over several orders of magnitude. So, resKIL and x264 will likely
benefit from performance prediction models as well.

2.8 chapter summary

At this point, we know that software product lines (and, in many
cases, configurable software projects) build upon features that de-
scribe individual configuration options. Feature models capture the
relationship and dependencies between features in a human- and
machine-readable manner; the Kconfig language is a common method
of specifying them in open-source software projects. Practitioners can
extend feature models with feature- or variant-wise annotations for
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performance prediction, or rely on machine learning methods to auto-
matically build a performance model. For the latter, we have examined
least-squares regression analysis, regression trees (CART, DECART),
model trees (LMT), and regression forests (XGB). We have also seen
methods and metrics that researchers can use to assess model accuracy
and interpretability. Finally, I have presented five product lines that
serve as evaluation targets in this thesis.

However, we will not look into ways of improving the accuracy and
interpretability of performance models right away. Instead, the next
section introduces the other focus area of this thesis: energy models
for configurable hardware peripherals.



3
E N E R G Y M O D E L S

When designing an embedded system, memory is not the only re-
source that engineers need to care about. Energy is at least as impor-
tant, especially so since it is often a consumable resource. In battery-
powered applications, energy usage determines how long a single
charge lasts. With energy harvesting, where e.g. miniature solar cells
are the only power source, it decides whether the system can operate
at all. Even on grid power, energy is often relevant; for instance, in
CPUs, energy usage relates to heat dissipation and must not exceed
the available cooling capacity.

Just like the performance attributes we have examined in the pre-
vious chapter, energy usage in embedded systems is far from static.
On the one hand, embedded systems consist of configurable and –
depending on use case – interchangeable components, including mi-
crocontrollers, sensors for measuring environmental data, actuators
for reacting to it, and wireless radio transceivers. Just like software
product lines, their configuration can affect attributes such as energy
usage or latency [ZV16]. On the other hand, whereas e.g. the text
segment size of a device driver is constant after compilation, this is not
the case for energy usage. Even for a fixed configuration, it depends
on the executed workload [HHS19].

To illustrate this, consider an engineer who is designing a battery-
powered wireless sensor network that measures environmental data
and regularly transmits it to a central hub. Apart from the sensors,
which we will not examine here, each node consists of at least two
components: a microcontroller and a radio chip. The microcontroller
can run at various clock speeds that affect processing latency, which
in turn dictates how long it must remain active before it can go back
to a low-power sleep mode. The radio chip uses configurable transmit
power (affecting packet loss and thus the risk of spending energy
to re-transmit data) and data rate (affecting the time it must remain
in transmit mode). It can enter a low-power sleep mode between
transmissions, but needs time and energy to wake up from it. So,
the most energy-efficient configuration depends on factors such as
transmission frequency, expected packet loss, and CPU load.

Energy models predict how workload and device configuration affect
latency and energy usage, and thus allow engineers to minimize
them and reason about multi-objective optimization problems such as
energy usage versus expected packet loss. Hence, they are wide-spread
in the Cyber-Physical Systems (CPS) and IoT communities [Sna+

16].

49
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My own experience with energy models started with my Master’s
thesis at TU Dortmund, where I developed work-in-progress algo-
rithms for automated benchmark generation, energy measurements,
and energy model generation with Markus Buschhoff [Fri17; BFS18].
Parts of this thesis build upon those foundations. While I have im-
proved all of them since then, many of those changes are incremental,
and thus best considered as related work rather than contributions in
the context of this thesis. Sections 5.2 and 6.2 as well as Chapter 7 will
focus on the latter.

This chapter covers state-machine models that describe the latency
and energy requirements of individual hardware components depend-
ing on workload (function calls and hardware states) and configuration
(e.g. data rate, transmit power, clock speed). It starts with a simple
energy model that employs a state machine for energy usage predic-
tion without respecting device configuration. In addition to a gentle
introduction to state machines, this allows for a refresher on the rela-
tion between energy, power, and latency (i.e., time) when dealing with
workload specifications and corresponding energy usage predictions.

We will then look into applications of energy models in the literature;
this overview also serves as motivation as to why state machines are
a good fit for the goals of this thesis. After that, we will examine the
Parameterized Priced Timed Automata state machine extension and see
how it can describe the run-time variability of hardware components
and its influence on energy attributes, thus allowing energy models to
support configurable devices.

The remainder of this chapter covers automated generation of bench-
marks for energy measurements and the Unsupervised Least-Squares
Regression machine learning algorithm for extending finite automata to
parameterized priced timed automata. It concludes with an overview
of peripheral components used as evaluation targets within this thesis.

3.1 state machines

In general, hardware components have distinct operating modes. For
instance, a radio transceiver may be in transmit or receive mode, idle,
or in a low-power sleep state. Each of these has a distinct average
power consumption, and switching between modes is not necessarily
instantaneous.

So, from a modeling point of view, we are looking at a state machine.
Each state corresponds to a hardware operating mode (hardware state),
and each transition changes the operating mode. The change may be
induced by an explicit driver function call from an application, e.g.
radio.transmit(data, len), or by the hardware itself. In the latter
case, it is typically still known to the driver thanks to interrupts or
timeout mechanisms. For instance, most radio chips will automatically
revert from transmit to idle mode upon a completed transmission,
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48 mW

IDLE
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init()
6 ms 154 µW

startListening()
470 µs 19 mW

stopListening()
510 µs 2.4 mW

write(data, len)
2.1 ms 16 mW

Figure 3.1: State machine model excerpt for an nRF24L01+ radio transceiver
without run-time configuration, annotated with energy attributes.

and indicate that by asserting a transmitDone interrupt. This results in
a one-to-one relation between driver functions and state transitions:
transmit indicates a transition from the idle state to the transmit state,
and transmitDone the inverse.

Fig. 3.1 shows a state machine model excerpt for an nRF24L01+ radio
transceiver that might be responsible for communication handling in a
battery-powered wireless sensor network. In this excerpt, there are two
states: the default IDLE mode, and the RX (receive) mode that listens
for incoming radio transmissions. There is no distinct TX (transmit)
state: the write function blocks until transmission is complete, so from
the model’s point of view the entire transmission happens during the
function call (i.e., during a transition from IDLE to IDLE). The model
annotates each state with average power usage, and each function call
(transition) with duration and average power.

With these annotations, engineers can determine workload-specific
energy usage. To do so, they can exploit the relation between time
t[s], power P[W], and energy E[J]. Energy is power over time, so the
energy used during a time frame (t1, t2) is

E =
∫︂ t2

t1

P(t)dt (3.1)

If power is constant, or only average power P is known, this resolves
to E = Pt. So, with a model such as the one shown in Fig. 3.1, engineers
can determine the total energy usage for arbitrary workloads, and also
the mean power usage during arbitrary workload segments.

Consider an application that calls init followed by startListening,
and then remains in receive mode indefinitely. Using the model an-
notations and (3.1), we see that the total energy used in the first hour
of operation is 154 µW · 6 ms + 19 mW · 470 µs + 48 mW · (3600 s −
6470 µs). This comes up to about 173 J, or 7 % of the energy stored in a
CR2032 coin cell battery. By comparison, an application that keeps the
transceiver in its IDLE state and only spends one second per minute
in RX mode needs just 4.5 J in the same time frame.
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As another example, assume that the application runs a main loop
that keeps the radio idle and transmits a radio packet every eight
minutes. The energy used during this eight-minute frame is 127 µW ·
(480 s− 2.1 ms) + 16 mW · 2.1 ms ≈ 61 mJ and the average power draw
in the main loop is 61 mJ

480 s ≈ 127.1 µW.
So, the energy model has already given us important advice: when

keeping the radio transceiver in idle mode, occasional data transmis-
sions have a negligible effect on average power usage. Keeping the
transceiver in continuous receive mode, however, will quickly drain
the battery.

Section 3.3 provides formal definitions for this energy model and
also presents models that consider run-time configuration variables.
Before that, let us put this approach into perspective by examining
modeling approaches from the literature.

3.2 related work

The term energy model applies to a wide range of model granularities.
Approaches in the literature range from fine-grained simulators that
examine dynamic and static power consumption of individual transis-
tors to component-level models that work with driver APIs or sensor
node states [KZ08]. In the latter case, components can be anything
between peripherals of an embedded device and entire devices in a
wireless sensor network.

Fine-grained models often focus on CPUs, as their energy usage
depends not just on clock speed and operating mode, but also on
the type of executed instructions and operand values [Pal+

17]. This
is helpful for energy-efficient software development: simulators or
energy models can annotate the energy usage of individual code
blocks, and thus identify inefficient code paths [HHS19]. However, it
is not within the scope of this thesis.

Component-level energy models distinguish between online and
offline modeling. Online models are evaluated at runtime and often rely
on performance counters provided by the operating system to calculate
energy usage [DZ11]. Offline models are evaluated beforehand and
work with user-specified workloads rather than operating system
features. As this thesis focuses on energy-aware hardware selection
and configuration rather than run-time energy optimizations, the
remainder of this section will only cover offline models.

3.2.1 Modeling Methods

A straightforward approach is using least-squares regression to fit
a user-provided power prediction function to each hardware state,
ignoring function calls [Zha+

10]. This is similar to feature-wise perfor-
mance models for software product lines (see Section 2.5.1). Examples



3.2 related work 53

include Pdisplay,on(x⃗) = β0 + β1 · xbrightness (linear influence of bright-
ness configuration on display power) and Psensor,on(x⃗) = β0 (constant
power if a sensor is enabled). Then, with online performance counters
or offline estimates that indicate the amount of time spent in each
hardware state and its configuration, users can determine total energy
E and average power P = E

t [Mur+
12].

This approach assumes that the time and energy cost of function
calls is negligible and that the time spent in each hardware state can
be tracked or estimated. For peripherals such as radio chips, this
is not the case. Here, entering the transmit or receive state is not
instantaneous, so five 10 ms transmit bursts are not the same as a
single 50 ms transmit operation [Hur+

11].
An opposite approach is removing hardware states from the equa-

tion and only looking at the energy cost of function calls. If each
hardware component automatically falls back to a low-power idle
state after a while, as is often the case in smartphone peripheral APIs,
function calls are all that is needed for energy modeling [KB11]. How-
ever, this does not work if state transitions are part of the driver API,
e.g. by allowing applications to toggle a radio’s receive mode or to
switch between an ultra-low-power sleep and a low-power idle state.

Hence, in general, a model must at the very least accommodate hard-
ware states (with average per-state power consumption) and function
calls (with expected duration) [Zho+

11]. Depending on assumptions
about hardware behaviour and model granularity, it may predict the
power or energy cost of function calls as well, or assume that power
usage during a function call is the average power of origin and destina-
tion state [Zho+

11; BFS18]. This thesis associates hardware states with
average power and function calls with average power and duration.

At this point, it makes sense to have an explicit state machine model
that maps driver function calls to transitions between hardware states
and provides power and duration annotations [McC+

11; Pat+
11]. The

state machine defines which function call sequences are legal, which
hardware state a function call switches to, and how long it takes to end
up there. It can even be learned automatically, e.g. by associating each
hardware register configuration with a distinct hardware state [ZV16],
or by means of changepoint detection and clustering [Che+

17]. Now,
each state and transition corresponds to a single, configurable aspect
of the peripheral device and its driver.

3.2.2 Model Attributes

This flavour of energy model annotates device states and driver func-
tions with energy attributes. For device states, it uses average power
and, in case the peripheral automatically leaves the state after a while,
duration. Function calls always have average power and duration.
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While device datasheets often specify some of these attributes, those
are rarely complete or accurate and therefore only suitable for rough
estimates [ZO13]. For higher accuracy, engineers must perform energy
measurements that exercise all hardware states and function calls with
a suitable sub-set of configurations, and use these to build an energy
model. They can do so by hand, or feed a variability model (including
hardware states, function calls, and run-time configuration variables)
into an automated benchmarking toolchain.

My own work relies on manually specified configuration-aware
state machines as variability models. A machine learning algorithm
adds configuration-dependent power and duration annotations to
each state and transition, and thus transforms the variability model
into an energy model: a parameterized priced timed automaton. This
method builds upon ideas first presented by Robert Falkenberg and
was partially co-developed with Markus Buschhoff [Fal14; Fri17].

3.3 parameterized priced timed automata

Before looking into configuration variables and energy annotations, let
us start with the underlying automata structure. Each pair of hardware
component and device driver has states and transitions. States are
typically defined in the device datasheet, and may be documented
alongside driver implementations as well – for instance, many periph-
eral devices need to be initialized before proper operation and can
only execute a limited sub-set of functions in low-power deep sleep
modes, and drivers need to keep track of that. Transitions are either
caused by driver function calls, or signalled using interrupts that are
handled by driver functions. Thus, given a driver and hardware docu-
mentation, anyone can build a model that describes hardware states
and transitions.

Definition 3.3.1 In this thesis, a Deterministic Finite Automaton (DFA) is
a tuple (Q, Σ, δ) consisting of a set of hardware states Q, a set of driver
functions and interrupts Σ, and a transition function δ : Q× Σ ⇀ Q.
The initial state is always q0 = UNINITIALIZED ∈ Q. We write state
names in uppercase, and transition names in camelCase.

In contrast to the common DFA definition, this variant leaves out
the set of accepting states F. As there is no limit on the amount of
function calls an application may make, the concept of accepting states
does not make sense here. From a satisfiability perspective, F = Q.
Technically, that makes it a Labelled Transition System rather than an
automaton. However, as automata and state machine terminology is
widely used in the energy modeling literature, DFA is a better fit in
this context.

When the operating system starts, the initial hardware state is un-
known, hence q0 = UNINITIALIZED. Adding configurable features
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RXIDLE

init()
dr := 1000
tp := 18
vl := 0

startListening()

stopListening()
setDataRate(rate)

dr := rate

setPALevel(level)
tp := level

setVarLength(on)
vl := on write(data, len)

Figure 3.2: PFA model excerpt for an nRF24L01+ radio transceiver with
configurable data rate (dr), transmit power (tp), and variable
length packets (vl).

(also known as parameters in this context) turns the DFA into a param-
eterized finite automaton that is able to track how function calls affect
the run-time configuration of the peripheral and its driver.

Definition 3.3.2 A Parameterized Finite Automaton (PFA) extends a DFA
(Q, Σ, δ) to a tuple (Q, Σ, δ, V, ∆). The set V describes the configurable
variables (features or parameters) of the device driver, and the relation
∆ : Σ×V ⇀ {const, arg}×R describes how function calls affect them.
Given a function σ ∈ Σ and a feature v ∈ V, if ∆(σ, v) = (const, x),
then calling σ sets the value of variable v to x. If ∆(σ, v) = (arg, i),
calling σ sets the value of variable v to the value of the i-th argument
of the function σ.

Note that this model draws a clear line between device state and
device configuration. The DFA component is responsible for keeping
track of device states, and each state change (i.e., the destination state
q′ of a transition q → q′) is independent of function arguments and
run-time configuration settings. The PFA component keeps track of
device configuration and updates it as specified by ∆ whenever a
driver function is executed.

This way, there is no ambiguity when using a device driver and
datasheet to come up with the structure of the corresponding PFA.
The cost for this is that I deliberately disregard cases where one
might argue that a function should lead to different hardware states
depending on its arguments and run-time feature configuration. We
will see an example for such a case in the BME680’s setPowerMode
and setSensorMode functions in Section 3.6.2. Later on, this thesis will
show that disregarding whether function arguments affect destination
states does not adversely affect energy model accuracy when using
appropriate modeling methods.

Fig. 3.2 shows an excerpt of a PFA model for an nRF24L01+ radio
chip, leaving out features and functions related to radio channel
selection and automatic retransmission for brevity. This leaves it with
Q = {UNINITIALIZED, IDLE, RX}, Σ = {init, idle, setDataRate,
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setPALevel, setVarLength, write, startListening, stopListening}, V =

{dr, tp, vl}, and functions δ and ∆ as shown.
The init function sets a default data rate and transmit power and

disables variable length packets. setDataRate, setPALevel and setVar-
Length change data rate, transmit power, and variable length support,
respectively. The write function transmits a packet with a specific
payload length and blocks until transmission is complete, whereas
startListening and stopListening change between IDLE and RX. Func-
tions other than stopListening cannot be called in the RX state.

A PFA expresses the driver’s run-time variability, and is sufficient
for automatic generation of benchmark programs. However, it has no
notion of power or energy. Adding those requires incorporating the
concepts of priced timed automata [VS08]. The resulting model is a
parameterized priced timed automaton [BFS18].

Definition 3.3.3 A Parameterized Priced Timed Automaton (PPTA) ex-
tends a PFA (Q, Σ, δ, V, ∆) to a tuple (Q, Σ, δ, V, ∆, P, t). The power
function P and duration function t associate each state in Q and
function call in Σ with a performance prediction model that maps
driver configuration and function call arguments to predicted power
and duration values. The function signatures are P : (Q ∪ Σ) →
((R ∪ {⊥})n → R≥0) and t : (Q ∪ Σ) ⇀ ((R ∪ {⊥})n → R≥0), with
n referring to a state- and function-dependent number of configurable
variables. For states, n = |V|, and for functions with n′ numeric
arguments, n = |V|+ n′.

The model function t is defined for all function calls, and for states
that are left automatically by the hardware, such as a TX state once
transmission is complete. These state changes are typically signalled
using interrupts and therefore accessible for automated benchmarks.

Note that this PPTA definition is far from feature-complete: it de-
liberately leaves out aspects such as polymorphic functions in C++
drivers, non-deterministic behaviour (e.g. successful transmission ver-
sus transmission timeout), and non-numeric arguments. While I have
successfully experimented with modeling non-deterministic behaviour
and non-numeric arguments, I do not consider these features to be
interesting from a performance modeling point of view. Hence, for the
sake of concise PFA and PPTA definitions, I leave them out here.

With a PPTA, developers can simulate application interactions with
the device driver by means of timed words, and calculate energy or
average power. For instance, a valid timed word for the model excerpt
shown in Fig. 3.2 is (init, 0) · (startListening, 10) · (stopListening, 12).
It indicates that the initialization function (causing a switch to the IDLE
state) is called at timestamp 0, the startListening function (causing a
switch to RX) at timestamp 10, and the stopListening function (back
to IDLE) at timestamp 12. The feature vector x⃗ starts out undefined
(⃗x = ⊥⃗) and is changed by individual function calls, as described by
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∆. The energy spent in this twelve-second snapshot, excluding the
stopListening function call, is calculated as follows.

E =P(init)({⊥,⊥,⊥}) · t(init)({⊥,⊥,⊥})
+P(IDLE)({1000, 18, 0}) · (10− t(init)({⊥,⊥,⊥}))
+P(startListening)({1000, 18, 0}) · t(startListening)({1000, 18, 0})
+P(RX)({1000, 18, 0}) · (2− t(startListening)({1000, 18, 0}))

This thesis focuses on automatic generation of performance predic-
tion models P and t for each state and transition. Automatic model
generation relies on energy measurements that exercise a suitable sub-
set of all states, transitions, and configurations. Energy measurement
automation, in turn, relies on automatic generation and execution of
energy benchmarks.

3.4 benchmark generation

An energy benchmark is an application that runs on an embedded
microcontroller and interfaces with the peripheral under test. It may
run as a stand-alone binary image or as part of an embedded operating
system; in the latter case, the operating system should not introduce
noise due to unrelated timer interrupts or execution of concurrent
tasks. At its core, an energy benchmark must contain a valid sequence
of driver function calls that exercises each hardware state and driver
function with a suitable amount of different configurations.

For a PFA A, the language L(A) contains almost that: a set of all
words accepted by A, which by construction is the set of all valid
function call sequences. For example, the PFA in Fig. 3.2 accepts
the word init() · setDataRate(rate) · write(data, len) · startListening().
However, L(A) is infinite and unaware of legal function arguments.

To obtain a finite set of function call sequences, let Lk(A) be the
prefix-free subset of L(A) where each word visits each state no more
than k times. With #q(w) defined as the number of times a word w
visits the state q, the formal definition is:

Lk(A) = {w ∈ L(A) | ∀q ∈ Q :

(#q(w) ≤ k ∧ ∄w′ : (w · w′) ∈ L(A) ∧ #q(w · w′) ≤ k)}

For a user-specified k, the language Lk(A) contains a finite, prefix-
free set of function call sequences that do not visit any hardware
state more than k times. While Lk(A) being prefix-free is not strictly
required, it helps reduce benchmark runtime by eliminating redun-
dancy. For example, both the word shown above and the word init()
· setDataRate(rate) · write(data, len) exercise the states IDLE and TX –
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however, the longer word above also covers RX and is therefore more
helpful for model learning.

As each function call sequence in Lk(A) starts in UNINITIALIZED,
benchmarks can execute them one after another without regard for
the end state of the previous sequence. Thus, a computer program can
automatically generate a benchmark application by extending each
word w ∈ Lk(A) with user-provided function arguments, delays be-
tween transitions, and measurement equipment-specific synchroniza-
tion signals that allow for mapping energy measurements to hardware
states, function calls, and configuration values. For instance, given
rate ∈ {250, 1000, 2000} and a delay_ms function to ensure 400 ms of
measurement time per state, the word init() · setDataRate(rate) results
in three benchmark sequences.

• init(); delay_ms(400); setDataRate(250);

• init(); delay_ms(400); setDataRate(1000);

• init(); delay_ms(400); setDataRate(2000);

The original work built in cooperation with Markus Buschhoff
relied on XML definitions and Perl scripts for benchmark generation
and energy measurement. For this thesis, I define state machines
and configuration values in a YAML format that is both human-
and machine-readable, and use a set of Python scripts and modules.
In both cases, a custom-built device (MIMOSA) performs energy
measurements and thus dictates the synchronization method [BGS13].
The implementation details of benchmark execution, synchronization,
and post-processing are not relevant here. An in-depth discussion of
automated energy measurement methods follows in Section 5.2.

The most important aspect is that at the end, the benchmark as-
sociates each state and driver function in each benchmark run with
an average power and a duration, and aggregates those and the cor-
responding configurations into state- and function-specific datasets.
Each dataset consists of a set Y = {y1, . . . , ym} of power or duration
values and corresponding configurations X = {x⃗1, . . . , x⃗m}. As en-
ergy measurements tend to be noisy, the benchmark measures each
configuration x⃗ several times.

3.5 model learning

The idea for extending a PFA to a PPTA is to process each hardware
state, each driver function, and each attribute (power and duration)
separately, resulting in one performance model for each state/function
and energy attribute. The PPTA then combines the PFA structure and
the individual performance models into a single energy model.

In principle, any of the algorithms presented in Section 2.5 is capa-
ble of generating performance models for energy attributes. However,
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neither least-squares regression nor the regression tree learning algo-
rithms presented there handle undefined values (⊥) in feature vectors.
To work around this, pre-processing algorithms can remove features
that hold undefined values entirely or map undefined values to zero.

Whether one should apply performance prediction models from the
product line engineering community to energy model generation is
one of the core questions of this thesis (RQ3), and we will come back
to that in Chapter 6. At this point, let us instead consider learning
methods from the energy modeling community.

A traditional energy modeling approach, as examined in Section
3.2.1, would either predict energy attributes using the mean of all
associated benchmark observations (ignoring hardware configuration
altogether), require a user-specified function template, or be limited
to linear regression. In contrast to that, we will now examine the
Unsupervised Least-Squares Regression (ULS) algorithm that is capable of
automatically finding and fitting functions that describe how numeric
configuration variables affect hardware behaviour [Fri17; BFS18]. It is
specifically tailored towards numeric (and possibly undefined) con-
figuration variables and does not support boolean variables (feature
toggles).

We start with a pre-processing step that determines which features
affect hardware behaviour (i.e., which features are relevant for model-
ing), and discards those that do not. This reduces the risk of overfitting
and improves model interpretability. Next, ULS performs two steps
to build and fit a suitable function template using least-squares re-
gression. It first examines how each relevant feature affects hardware
behaviour, i.e., whether the relationship is linear, exponential, or sim-
ilar. It then builds a function template that expresses the combined
effect of these features, and fits it using least-squares regression.

3.5.1 Identification of Relevant Features

At its core, determining whether a feature affects hardware behaviour
is simple: build two LUT models, one of which ignores the feature in
question – if the LUT model that ignores the feature has a higher error
than the one that knows about it, the feature is likely relevant. The
formal description of this approach builds upon the definitions from
Sections 2.5.2 and 2.5.3.

Again, let S = {(x⃗1, y1), . . . , (x⃗m, ym)}. We utilize µ(S) (arithmetic
mean, 2.3), σ(S) (standard deviation, 2.4) and Vali(S) (unique values
of feature i, 2.6). We also rely on the set of unique configurations
UniqX(S) (2.10) and training data partitioned by configuration Sx⃗
(2.11), both of which are duplicated below for context. Finally, given
a feature vector x⃗ = (x1, . . . , xn), x⃗\i = (x1, . . . , xi−1, xi+1, . . . , xn) de-
scribes the feature vector that leaves out the i-th feature.
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Algorithm 6 Identify the set I ⊆ {1, . . . , n} of relevant features in S.

function RelevantFeatures(S, n)
I ← ∅
for i ∈ {1, . . . , n} do

if σ(Sconst)
σ(Sconst\i)

< 1
2 ∧ |Vali(S) ∩R| ≥ 3 then

I ← I ∪ {i}
return I

same as (2.10) UniqX(S) = {x⃗ | (x⃗, y) ∈ S} (3.2)

without i-th feature UniqX\i(S) = {x⃗\i | (x⃗, y) ∈ S} (3.3)

same as (2.11) Sx⃗ = {(⃗v, y) ∈ S | v⃗ = x⃗} (3.4)

configuration partitions Sconst = {Sx⃗ | x⃗ ∈ UniqX(S)} (3.5)

without i-th feature Sconst\i = {Sx⃗\i | x⃗\i ∈ UniqX\i(S)}
(3.6)

mean standard deviation σ(S) = 1
|S| ∑

S∈S
σ(S) (3.7)

The set Sconst contains one partition Sx⃗ for each unique feature
vector x⃗ present in the observations S. Hence, σ(Sconst) refers to the
mean standard deviation of partitions with constant configuration –
i.e., the underlying noise or uncertainty of measurements. σ(Sconst\i)
refers to the same, but pretends that the i-th feature does not exist, i.e.,
it is not constant in the partitions of Sconst\i. So, if σ(Sconst\i) is larger
than σ(Sconst), the i-th feature likely affects the measured performance
property. However, attempting to find and fit a regression function for
it only makes sense if it takes a sufficient amount of unique values to
distinguish between different function templates.

Algorithm 6 combines these considerations into a heuristic that
builds a set I ⊆ {1, . . . , n} of relevant features. For each feature
i ∈ {1, . . . , n}, it checks if ignoring it increases the measurement
uncertainty (mean standard deviation) by a factor of at least two and
if the feature takes at least three different unique values. If both checks
pass, the feature is likely relevant for the modeled energy attribute
and suitable for least-squares regression, and thus added to the set I.

3.5.2 Unsupervised Least-Squares Regression

Let I be the set of relevant features identified by RelevantFeatures

in the previous step. If I = ∅, no feature has an effect on the energy
attribute and the constant function x⃗ ↦→ µ(S) is sufficient for modeling.
Otherwise, the goal is to find and fit a function that describes how
each feature in I affects the energy attribute. This consists of two steps:
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Algorithm 7 Find the best-fitting function template for the influence
of xi in observations S, using a set of function templates G.

function FindTemplate(S, G, i)
for g ∈ G do

for x⃗ ∈ S do
if g(xi) = ⊥ then ▷ Input domain is violated

G ← G \ {g}
if G = ∅ then

return ⊥
for g ∈ G do

Zg ← 0
Zµ ← 0
for S′ ∈ Sconst\i do

fit f (x⃗) = β0 + β1g(xi) on S′

Zg ← Zg + SSR( f , S′)
Zµ ← Zµ + SSR(x⃗ ↦→ µ(S′), S′)

g← argmin(g, Zg) ▷ g has lowest SSR
if Zg ≥ Zµ then

return ⊥ ▷ No suitable template in G

return x⃗ ↦→ g(xi)

finding a suitable function for each individual feature, and building
and fitting a composite function that takes all features into account.

For the first step, the algorithm relies on a built-in set of candidate
functions G. These reflect the observation that the energy influence
of configuration options often follows simple relations. For instance,
screen brightness tends to have a linear influence on power usage, data
rate and transmission time are inversely proportional, and transmit
power configuration often has a square effect on actual transmit power.

If needed, users can replace or extend G in order to use ULS in
domains that its built-in functions were not intended for. In this thesis,
all algorithm invocations use the following set of function templates.

G = {x ↦→ x, x ↦→ ln(x), x ↦→ ln(x + 1), x ↦→ ex,

x ↦→ x2, x ↦→ x−1, x ↦→ x
1
2 }

The ULS algorithm first looks at the influence of features in isolation.
For each feature i ∈ I, it determines the function template gi ∈ G that
best predicts how xi affects the observed energy attribute, and returns
a set F = {gi1 , gi2 , . . . } with one function template per feature in I.
Algorithm 7 describes the method in detail.

The set F describes how individual configuration variables affect
device behaviour, but it is not clear how they interact. Consider, for
instance, a radio transceiver with configurable data rate (dr) and pay-
load length (pl). Its transmissions start with a fixed-length preamble,
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Algorithm 8 Build and fit an n-dimensional prediction function on
the set of observations S, using the set of function templates G.

function BuildULS(S, G, n)
F ← ∅
for i ∈ RelevantFeatures(S, n) do

if FindTemplate(S, G, i) ̸= ⊥ then
F ← F ∪ {FindTemplate(S, G, i)}

if F = ∅ then
return x⃗ ↦→ µ(S)

fit f (x⃗) = ∑F′∈P(F)

(︂
βF′ ·∏ f∈F′ f (x⃗)

)︂
on S

return f

followed by the variable-length payload. In this case, transmit duration
neither depends on data rate alone ( 1

dr ) nor on data rate over payload
length ( pl

dr ). Instead, it is a function of both: β0 + β1
1
dr + β2

pl
dr . Hence,

ULS builds a function that accounts both for individual and combined
influence of configuration variables by using the power set P(F):

f (x⃗) = ∑
F′∈P(F)

(︄
βF′ · ∏

f∈F′
f (x⃗)

)︄
(3.8)

It fits this function template on all measurements in S (see Algo-
rithm 8), and uses the resulting function including the regression
variables βF′ as model function for performance prediction. Thus, it
annotates each pair of hardware state / driver function and energy
attribute with a prediction function.

3.5.3 Example

To illustrate how the algorithm works, let us go back to the nRF24L01+
radio transceiver shown in Fig. 3.2. The write function’s power con-
sumption is likely affected by device configuration, and therefore a
good candidate for demonstrating ULS. For simplicity, we will only ex-
amine variability in the data rate (dr) and transmit power (tp) variables,
and disable variable-length packets (vl) in all measurements.

The learning algorithm starts out with configurations X and corre-
sponding power measurements Y. Each feature vector x⃗ has one entry
for data rate (dr), transmit power (tp), and variable length (vl). Data
rate is 250, 1000, or 2000 kbit/s; transmit power is 0, 6, 12 or 18. These
unit-less numbers correspond to a power amplifier output power of
−18, −12, −6 and 0 dBm, but use offset (and, thus, non-negative)
values within the driver API. Variable length is always 0.

Hence, Sconst\dr contains four partitions with variable data rate
and constant transmit power, and Sconst\tp contains three partitions
with variable transmit power and constant data rate. The set Sconst\vl
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Figure 3.3: Feature configuration versus power usage in the partitions
Sconst\dr (left) and Sconst\tp (right) for nRF24L01+ benchmark data.

contains twelve partitions with variable data rate and variable transmit
power – so the same partitions as Sconst, just without the vl feature.
Fig. 3.3 illustrates Sconst\dr and Sconst\tp. Note that there are several
measurements for each configuration; the measurement noise is so
low that it is barely visible in the plots.

For identification of relevant features, we already see that both dr
and tp affect the measured average power, whereas vl does not (as it is
not variable to begin with). Algorithm 6 comes to the same conclusion,
with σ(Sconst)

σ(Sconst\dr)
≈ 0 < 1

2 , σ(Sconst)
σ(Sconst\tp)

≈ 0 < 1
2 , and σ(Sconst)

σ(Sconst\vl)
= 1 ≥ 1

2 .

Hence, I = {dr, tp}.
Now, the task is to find functions that predict how data rate and

transmit power configuration affects average power consumption.
Here, Algorithm 8 returns F = {gdr, gtp} = {x⃗ ↦→ log(xdr), x⃗ ↦→ x2

tp}.
This matches the functions that a viewer of Fig. 3.3 might expect. With
P(F), the resulting model function is:

f (x⃗) = β∅ · 1 + βgdr log(xdr) + βgtp x2
tp + βgdr,gtp log(xdr)x2

tp

ULS then fits the function on all observations in S using ordinary
least-squares regression. The result is the following model function
f ((xdr, xtp, xvl)) for predicting the µW power usage of the nRF24

driver’s write function.

f (x⃗) = 59058 + 6846 · log(xdr) + 252 · x2
tp − 30 · log(xdr)x2

tp

Next, let us look at real-world peripherals and measurements for
evaluation purposes.

3.6 evaluation targets

Energy modeling evaluations in this thesis use three highly config-
urable peripheral components as targets: an environmental sensor
(Bosch BME680) and two radio transceivers (TI CC1200 and Nordic
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Figure 3.4: A MIMOSA energy measurement setup. Components (left to
right): voltage supply and shunt board, integrator, calibration
board, and microcontroller for benchmark execution with DUT.

nRF24L01+). Benchmark automation and data acquisition rely on the
MIMOSA measurement device and the dfatool framework that will
be presented in Section 5.2. We will now examine MIMOSA and the
three peripherals in detail.

3.6.1 MIMOSA

MIMOSA1 is a measurement device that has been specifically de-
signed for automated measurements of low-power embedded compo-
nents [BGS13]. It uses a current mirror and hardware integrators to
track the current flowing through a Device Under Test (DUT), allowing
it to observe power consumption spikes even if they are shorter than
the sample rate. Built-in voltage drop compensation ensures that the
voltage fed to the DUT is constant and not affected by the voltage
drop in the shunt resistor used for current measurement.

MIMOSA provides 16-bit current measurements with a configurable
upper limit of 2.4 to 50 mA, giving a resolution of 41 to 869 nA per
bit. Its 100 kHz sample rate includes analog current readings as well
as the state of a digital synchronization input that can be connected
to a General Purpose Input/Output (GPIO) pin of a microcontroller.
Combined with an automatically-generated benchmark program that
toggles this GPIO pin at pre-defined points in time and logs func-
tion calls via UART, this helps with automated analysis of bench-

1 MIMOSA is a German acronym for “Messgerät zur integrativen Messung ohne
Spannungsabfall”, i.e., measurement device for integrative measurements without
voltage drop.
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SLEEP

init()
OS := 0
mode := sleep
IAQ := OFF

PENDING FORCED

configure(o, i, temp, time)
OS := o
IAQ := i
T := temp
t := time

setSensorSettings() setSensorMode()

getSensorData()

setPowerMode(m)
mode := m

Figure 3.5: PFA model for a BME680 environmental sensor with configurable
pressure oversampling (OS), optional air quality measurement
(IAQ), power mode (mode), heater temperature (T), and heater
time (t).

mark results. Fig. 3.4 shows a typical measurement setup, using a
TI MSP430FR5969 microcontroller for benchmark execution and a TI
CC1200 radio transceiver as device under test.

Each pair of consecutive MIMOSA samples is 10 µs apart. This has
implications for short driver function calls: A transition that takes
15 µs to complete will be measured as either 10 or 20 µs depending on
its microsecond timing, and a model that correctly predicts its 15 µs
duration will always be off by 5 µs (so, more than 30 %). As this error
is caused by measurement artifacts rather than model deficiencies, this
thesis leaves out power and duration measurements for transitions
with a maximum duration of 100 µs or less.

It also leaves out the UNINITIALIZED state and the init function
when working with energy measurements. These operate on unde-
fined hardware states where configuration attributes suitable for per-
formance prediction are not available. They are also not interesting, as
they typically do not occur once an embedded system has finished its
startup. With this in mind, let us look at our devices under test.

3.6.2 BME680 Environmental Sensor

Bosch SensorTec’s BME680 is a low-power sensor for measuring tem-
perature, humidity, air pressure, and air quality. The latter works by
means of a metal oxide plate whose resistance, when heated to several
hundred degrees Celsius, is affected by the presence of pollutants
in the air. Bosch SensorTec provides an open-source BME680 driver2

and lists device states in the documentation; Fig. 3.5 shows the cor-
responding variability model. The measurements in this thesis build
upon a C++ port of the driver, as this works best with my automatic
benchmark generation and execution framework.

2 https://github.com/boschsensortec/BME68x_SensorAPI

https://github.com/boschsensortec/BME68x_SensorAPI
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The sensor starts out in a low-power SLEEP mode, and does not
perform any measurements by default. Applications can configure it
using configure, setSensorSettings and setPowerMode, call setSensorMode
to start a single measurement (FORCED mode), and use getSensorData
to read its results.

There is a discrepancy between driver states and hardware states.
The driver does not apply configuration changes made with configure
automatically, but only does so upon an explicit call to setSensorSettings.
Hence, the PFA model has a PENDING state that reflects the state
machine inside the driver API rather than a separate hardware state.

The driver also has special behaviour when it comes to the interac-
tion between hardware states and configuration variables. The function
setSensorMode sets the operating mode of the sensor to mode, which
is either SLEEP or FORCED. On the hardware side, the sensor only
transitions into FORCED mode if mode tells it to. However, in the PFA
model, setSensorMode always leads to the FORCED state and it is up to
the PPTA energy model to handle the influence of mode on the state’s
average power.

As soon as it has performed a measurement, the sensor automat-
ically returns from FORCED to SLEEP mode – however, it neither
signals this using an interrupt, nor does it happen after a constant
time. Instead, measurement duration depends on device configuration,
and the manufacturer recommends that applications using the driver
estimate it, wait, and then poll the sensor state until the measurement
is complete. To avoid energy-intensive polling loops, the benchmarks
here instead wait for the (constant) maximum time that FORCED
mode can be active. They treat the getSensorData function call as a
return to SLEEP mode; this function transfers measurement results
from the device to the driver and should be called whenever FORCED
mode was active.

Configurable features include the oversampling rate of tempera-
ture, humidity and pressure measurements, heater temperature and
heat duration, and whether air quality measurements are enabled.
The benchmarks here do not configure temperature and humidity
oversampling to allow for less time-intensive benchmark runs.

Fig. 3.6 shows the variance of measurement results, excluding the
configure and setPowerMode functions due to a duration of less than
20 µs. FORCED and getSensorData exhibit notable variance, and the
duration of setSensorSettings and setSensorMode is far from constant as
well. The few dozen microwatts worth of outliers present in SLEEP and
PENDING are small compared to the power deviations in other states
and transitions, most notably FORCED and getSensorData. So, the
sensor has both energy attributes that may benefit from configuration-
aware performance prediction models, and attributes that are likely not
affected by its configuration. For energy model evaluation, FORCED
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Figure 3.6: Observed power and duration of BME680 states and transitions
in benchmark results.
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IDLE

init()
dr := 100
tp := 47

EWORSYNTH

RXTX

SLEEP XOFF

send(data, len)
pl := len

txDone()
prepare()

idle()
sleep()

init()
dr := 100
tp := 47

receive()

idle()

eWOR()

idle()

crystalOff()

idle()
setSymbolRate(rate)

dr := rate

setTxPower(p)
tp := p

Figure 3.7: PFA model for a CC1200 radio transceiver with configurable
payload length (pl), data rate (dr), and transmit power (tp).

power, getSensorData power and duration, and setSensorSettings dura-
tion are most interesting.

3.6.3 CC1200 Radio Transceiver

The Texas Instruments (TI) CC1200 is an embedded radio transceiver
for the sub-GHz ISM band that was used in the first iteration of
the Solar Doorplate, a demonstrator for a wireless network of en-
ergy harvesting-powered smart doorplates developed at TU Dort-
mund [Bus19]. It features a variety of sleep and intermediate power
states and low-level control over modulation and other radio attributes.
In addition to standard IDLE, SLEEP, RX (receive) and TX (transmit)
states, it supports EWOR, SYNTH, and XOFF modes.

EWOR (wake on radio) is a sleep mode in which the transceiver
regularly wakes up to check for radio traffic, and emits an interrupt if
it detects any. This allows the microcontroller to remain in a low-power
sleep mode rather than having to do these checks by itself. SYNTH
(synthesizer standby) is an idle mode in which the frequency synthe-
sizer is turned on in anticipation of radio transmissions, allowing the
radio to switch to RX/TX mode faster than from the regular IDLE
mode at the cost of higher idle power consumption. XOFF (crystal
off), on the other hand, is an idle mode in which the chip’s processor
clock has been turned off. In contrast to SLEEP, all register values are
retained, and return to idle takes less time. The CC1200 user guide
contains a detailed description of these hardware states, including a
state machine model [Ins13].

Fig. 3.7 shows the transitions and configuration options of the
corresponding device driver. Data transmission (TX) is non-blocking;
a txDone interrupt signals transmission completion or errors. For
simplicity, the driver model only considers transitions to and from
IDLE, and leaves out transitions between non-idle states. Configurable
variables are payload length, data rate, and transmit power. The driver
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Figure 3.8: Observed power and duration of CC1200 states and transitions in
benchmark results.

does not support additional configuration options, e.g. for wake-on-
radio operation.

Fig. 3.8 shows the variance of measurement results. send is the only
function call that takes more than 100 µs to complete, so it is the only
one relevant for model generation. The wake-on-radio EWOR state
can be much more efficient, in principle, but the driver used here
does not provide the configuration options needed to achieve that.
For energy model evaluation, TX power and duration as well as send
duration are most interesting.

3.6.4 nRF24 Radio Transceiver

Nordic Semiconductors’ nRF24L01+ is a low-cost 2.4 GHz radio
transceiver with packet-based operation that was used in the second
Solar Doorplate iteration [Bus19].

Similar to CC1200, it provides STANDBY and RX modes. In the
driver used here3, there is no TX state, however – instead, sending a
packet is a blocking operation, so the entire transmission process is
part of the write transition. While it does have a SLEEP mode, power
consumption in that state is below the usable measurement range of
MIMOSA and thus not included here.

In contrast to CC1200, the nRF24 driver supports packet operation
with automatic acknowledgment of received packets and automatic
retransmission of packets that were not acknowledged. For this to

3 https://github.com/nRF24/RF24

https://github.com/nRF24/RF24
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STANDBY

init()
ar := 1

dr := 1000

rd := 1500

rl := 1

tp := 18

vl := 0

RX

startListening() stopListening()

setAutoAck(enabled)→ ar := enabled

setDataRate(rate)→ dr := rate

setPALevel(power)→ tp := power

setRetries(delay, limit)→ rd := delay

rl := limit

setVarLength(enabled)→ vl := enabled

write(buf, len, ar′)

Figure 3.9: PFA model for an nRF24 radio transceiver with configurable
automatic retransmission (ar), data rate (dr), retransmit delay (rd),
retransmit limit (rl), transmit power (tp), and variable payload
length support (vl).

work, the automatic retransmission feature must be enabled on sender
and receiver, which users can do globally (setAutoAck) or on a per-
transmission level with the ar′ argument to the write function. Retrans-
mission delay and limit (maximum number of retransmissions) are
configurable as well.

The driver uses 32-Byte packets by default, but can be configured
for variable-length payloads. So, just like BME680, it has a variety
of boolean and numeric configuration options. Fig. 3.9 shows the
corresponding PFA model.

I expect dynamic payload size to affect whether write duration
depends on payload length or not, and auto-ack to determine whether
related settings affect write duration or not. Note that payload length
is a function argument and not a configurable driver feature here: as
write is a blocking function, there is no TX state and thus no need to
keep track of the payload length for TX power and duration prediction.

Fig. 3.10 shows the variance of measurement results. Most function
calls take longer than their CC1200 counterparts and show little to no
influence of configuration variables. The only configuration-dependent
components appear to be power consumption and duration of the
write function, and possibly RX power. Hence, only these three are
interesting for energy model evaluation.

3.7 chapter summary

As we have seen, peripheral components and device drivers are not
unlike software product lines: they, too, expose variability that af-
fects timing and energy attributes of hardware states and function
calls. In contrast to software product lines, variability models for hard-
ware components have to take interactions between hardware states,
function calls, and run-time configuration variables into account.
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Figure 3.10: Observed power and duration of nRF24 states and transitions in
benchmark results.
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Even without an explicit reference to product line development,
past energy modeling research has used variability models in a sim-
ilar manner: state machine models capture the interaction between
device states and driver functions, and regression templates describe
which configuration variables or run-time performance counters affect
hardware behaviour.

However, compared to SPLs, there has been little work on the
performance modeling aspect. Many existing energy models use con-
stant energy annotations and are therefore unable to predict how
configuration variables affect energy requirements. Those that support
configuration variables often rely on manually-specified regression
templates [Zha+

10], or use clustering and mean values for predic-
tion [Che+

17] rather than attempting to learn a prediction function.
Unsupervised Least-Squares Regression, a work-in-progress algo-

rithm that I developed before starting work on this thesis, partially
resolves this. It can automatically identify relevant features and build
suitable function templates for least-squares regression, thus allowing
engineers to automatically transform Parameterized Finite Automata
into Parameterized Priced Timed Automata. However, in contrast to
performance models for software product lines, it does not support
boolean feature toggles.

With this in mind, let us now take a closer look at the similarities
and differences between performance models for software product
lines and energy models for embedded peripherals. I will also use this
opportunity to revisit the research questions laid out in Section 1.3
with the background knowledge that we now have.



4
P R O B L E M S TAT E M E N T

Non-functional property models for software product lines and energy
models for hardware components address the same problem: automat-
ically learning a performance prediction model for a variable system
component. However, as the two previous chapters have shown, there
are notable differences between the two.

• In software product lines, the main challenge is handling the
hundreds to tens of thousands of (mostly boolean) configuration
options that modern software exposes [Per+

21; Guo+
18].

• While hardware components tend to have no more than a dozen
(often numeric) run-time configuration variables, models for
them must consider the interaction between hardware states and
driver functions [Zha+

10; HHS19].

• In contrast to software product lines, automatic data acquisition
for energy models relies on suitable measurement equipment
and benchmark synchronization methods.

Two different scientific communities with little interdisciplinary
cooperation work with these two types of performance models: the
Software Product Line Engineering (SPLE) community focuses on per-
formance attributes of software components, and the Cyber-Physical
Systems and Internet of Things (CPS and IoT) community on energy
attributes of hardware components. Both communities make different
assumptions about the type and importance of features they handle,
and use different methods for variability and performance modeling.
Table 4.1 outlines the key differences in variability modeling method,
feature type and configuration space size, and typical performance
model generation approach.

In my opinion, both communities can – and should – learn from
each other, and machine learning algorithms for performance model

sple cps/iot

Feature models [ES15; BSE19] UML [SUP21] or informal

+ state machines [ZV16; Che+
17]

10 . . . 104, boolean [Tar+
11] 1 . . . 10, numeric [Har+

16]

Regression trees [Guo+
18] Least-squares regression [BFS18]

Table 4.1: Key differences between variability and performance models in
the SPLE and CPS/IoT communities.
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generation can specifically benefit from both fields. In fact, showing
that this is the case is the main contribution of this thesis: in Chapter
7, I will present the Regression Model Tree machine learning algorithm
and use it to automatically build interpretable performance models
for software and hardware components.

Additionally, the journey towards regression model trees provides
contributions to the entire performance modeling life cycle, from
energy measurements over the formal link between variability models
and performance models to model generation and performance-aware
product line configuration. All of them prioritize automation: tedious
and error-prone manual labour should be avoided wherever possible.

rq1 : energy measurement synchronization

Performance model generation relies on data sets that map software
or hardware configuration to performance attributes. As noted in the
previous chapter, obtaining these is especially challenging for energy
models. Automatic energy measurement requires not just the ability
to measure energy usage, but also a way of synchronizing energy
readings to benchmark events.

Conventional automation approaches use out-of-band signals for
synchronization, which may be unavailable for a variety of reasons.
On the one hand, they require hardware that exposes suitable output
signals. While this is often the case when working with development
prototypes, it may no longer be possible when running energy mea-
surements on a production unit that does not provide access to spare
output signals. On the other hand, these automation methods can
only be used with measurement equipment that is capable of logging
energy readings and synchronization signals at the same time. Such
equipment is often expensive, either in terms of money (commercial
hardware) or time (do-it-yourself approaches).

Hence, RQ1: are automated and accurate CPS/IoT energy measure-
ments feasible on hardware that lacks suitable out-of-band synchro-
nization methods? Here, the main contribution is a generic synchro-
nization and drift compensation algorithm that exclusively relies on
on-board timers and in-band signalling. Additionally, I will provide
an accuracy analysis of the embedded energy measurement circuit on
the affordable ($20 apiece) commercial off-the-shelf MSP430FR5994

evaluation boards that serve as evaluation targets for the algorithm.
Both of these topics follow in Chapter 5.

rq2 : linking variability models and performance models

Once an engineer has obtained a set S = {(x⃗1, y1), (x⃗2, y2), . . . } of
configurations and performance measurements, they can employ ma-
chine learning to build a performance model. Especially in the field
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of software product lines, this raises the question of linking the per-
formance model with the already-present variability model. Learning
algorithms can integrate both into a single model by means of feature-
and variant-wise annotations (cf. Section 2.2), or keep them separate
and use feature vectors for coupling (cf. Section 2.5).

This is a fundamental decision that impacts the expressiveness and
flexibility of variability and performance modeling methods, the anno-
tation process during model generation, and also model maintenance
as a product line and its implementation components evolve over
time. Chapter 6 addresses the corresponding research question (RQ2):
should performance models be integrated into variability models, or
should they be separate entities?

Along this way, we will also examine the relation between hardware
components and product lines. Drivers for hardware components are
rarely developed as product lines, yet a key element of this thesis
is that energy models for hardware components can be treated just
like performance models for software product lines. Hence, I will
explain the relation between configurable hardware components, state-
machine based variability models for them, and product lines.

Finally, we will take a look at the features that variability mod-
els work with. As stated earlier, SPLE often focuses on boolean-only
features, whereas energy models typically work with numeric (non-
boolean) configuration variables. Using the evaluation targets pre-
sented in Sections 2.7 and 3.6, we will examine whether this makes
sense, or whether variability and performance models should consider
both kinds of features.

rq3 : interpretable machine learning

After that, we can finally address the core question of this thesis (RQ3):
can a common machine learning algorithm for SPLE and CPS/IoT
performance models provide lower prediction error and model com-
plexity than conventional approaches, without requiring manually
provided domain information or model structure? If that is the case,
any configurable software or hardware system whose configurations
can be formally expressed is suitable for performance model genera-
tion. It does not matter how closely it resembles a product line and
whether it has been engineered according to SPLE principles.

The answer to this question revolves around my Regression Model
Tree machine learning algorithm and data structure. In Chapter 7, we
will first examine two methods for improving model interpretability.
I will then present the Regression Model Tree data structure and the
corresponding machine learning algorithm, including a method for
detecting co-dependent variables in regression analysis. Regression
Model Trees combine the aforementioned methods in a way that im-
proves model interpretability and accuracy, allowing them to achieve
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better performance than the sum of their parts. The chapter closes
with an evaluation against related machine learning methods.

rq4 : performance models for hybrid product lines

Once variability and feature modeling are taken care of, it is time
for a detailed look into case studies and model applications. On the
one hand, this provides real-world context for querying and interpret-
ing Regression Model Tree-based performance models. After all, a
performance model is not a goal unto itself, but most useful when
reasoning about real-world products. On the other hand, so far, we
have examined software and hardware components largely in isolation.
The case studies contain hybrid product lines with variability in both
aspects, and thus serve to answer RQ4: are product line engineering
and performance modeling techniques also applicable to product lines
that cover soft- and hardware variability?

Chapter 8 addresses this by presenting two product lines and an-
alyzing performance models for those. The resKIL product line for
resource-efficient AI in agricultural machinery combines configurable
software with interchangeable hardware components; its performance
attributes include AI latency, throughput, and accuracy. The second
product line describes the configuration space of data transfer between
wireless IoT nodes, with the analysis focusing on how hardware and
data serialization format selection affect the energy cost and memory
requirements of data transfers.

resKIL also serves as a real-world case study for using and inter-
preting Regression Model Trees that goes beyond the quantitative
evaluation in Chapter 7. This includes manual model analysis as well
as performance-aware product line configuration within the kconfig-
webconf utility that I designed as part of this thesis.



5
D ATA A C Q U I S I T I O N

Before engineers can use machine learning algorithms for perfor-
mance model generation, they must run benchmarks to obtain sets
S = {(x⃗1, y1), (x⃗2, y2), . . . } of configurations and corresponding per-
formance attributes. For software product lines, this typically entails
building specific configurations and then measuring attributes such
as file size or processing throughput. This is an established method;
I will give a brief overview of my implementation for automatic per-
formance measurements of Kconfig-based software product lines in
Section 5.1.

When working with hardware components, data acquisition be-
comes more challenging. Here, measurement campaigns rely on bench-
mark applications to exercise a suitable subset of all hardware states,
function calls, and configurations. They must observe energy attributes
during benchmark execution, and synchronize them with benchmark
events so that they can associate each state and function call with
configurations and corresponding average power or duration values.
Section 5.2 presents my method for doing so even when out-of-band
synchronization signals are unavailable, and thus answers RQ1: are
automated and accurate CPS/IoT energy measurements feasible on
hardware that lacks suitable out-of-band synchronization methods? It
includes an accuracy analysis of a $20 apiece commercial off-the-shelf
energy measurement circuit that serves as evaluation target.

5.1 benchmarking kconfig-based software product lines

Obtaining benchmark data for learning performance models of Kconfig-
based SPLs or SPL-like software projects consists of four steps for
each training sample: Configure the project according to an appropri-
ate configuration space sampling strategy, build a product, measure
performance attributes, and store configuration and performance at-
tributes in a database. I have implemented this as part of my dfatool
performance modeling toolchain1. With it, given a Kconfig-based prod-
uct line or software project, any engineer can automatically obtain
benchmark data with a minimum amount of manual work.

The name dfatool stems from the toolchain’s origin: its first appli-
cation, and the reason for its inception, was energy measurement
automation built upon DFA and PFA models. It uses the resulting
benchmark data to extend those into PPTA energy models (see Section

1 https://ess.cs.uos.de/git/software/dfatool
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3.3). By now, its feature scope has extended and dfatool has become a
name without underlying meaning.

5.1.1 User-Provided Commands

The engineer starts with a release or development version of the
software project whose performance they want to measure, such as
busybox. Before the benchmark process can start, they must implement
three commands. For simplicity, I will assume that the project comes
with a Makefile and that the engineer implements the benchmark-
related commands as make targets. This is not a requirement: all
commands are configurable, and the engineer may also use shell
scripts or other build, configuration and measurement commands
instead.

• make nfpkeys must output a JSON dictionary that lists the rele-
vant performance attributes with human-readable descriptions,
units, and optimization goals (i.e., whether an attribute should
be minimized or maximized).

• make randconfig must generate a random configuration and
write it to the .config file. In many cases, it is sufficient to call
kconfig-conf --randconfig Kconfig for this.

• make nfpvalues must output a JSON dictionary that maps each
performance attribute to a measurement that corresponds to the
current system configuration.

Examples are available in the dfatool documentation.

5.1.2 Sampling

Once that is done, the engineer can start exploring the configuration
space using dfatool’s explore-kconfig.py command. Like many other
performance modeling approaches for SPLs, dfatool uses random sam-
pling [Per+

21]. Optionally, it can randomize numeric variables on its
own, and explore the neighbourhood of random or user-provided
configurations. For each configuration, neighbourhood exploration
additionally benchmarks all configurations in which only a single
variable has a different value, using five distinct values for numeric
variables (see Section 2.7.2 for details). Randomization of numeric vari-
ables and neighbourhood exploration rely on the Kconfiglib parser2

to determine the type and (if numeric) range of configuration variables
and to read/write .config files.

At runtime, explore-kconfig first stores performance attribute de-
scriptions (make nfpkeys) in a benchmark database. Next, it generates

2 https://github.com/ulfalizer/Kconfiglib

https://github.com/ulfalizer/Kconfiglib
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(make randconfig, if random sampling is enabled) and builds (make)
configurations, and stores each configuration (.config file contents)
and the corresponding performance attributes (make nfpvalues) in
the benchmark database.

For example, the command explore-kconfig.py --random 2000

--random-int .../Kconfig benchmarks 2,000 random configurations,
while ensuring that numeric features are randomized as well. The
latter is important when implementing randconfig with commands
such as kconfig-conf --randconfig, which only randomizes boolean
features.

In --random mode, explore-kconfig also checks for build success
and generates a new random configuration when encountering a build
failure. This way, it always generates the requested number of training
samples. While well-designed product lines should not have invalid
configurations that do not resemble a working product, dfatool also
supports software projects that are not developed according to SPLE
principles. There, it may encounter invalid configurations and other
variability modeling issues [Tar+

11].
dfatool’s analyze-kconfig.py command transforms this data set

into performance models. Engineers can interpret those manually or
pass them to kconfig-webconf for performance-aware product line
configuration. Details follow in Chapter 7 and Section 8.2, respectively.

5.2 energy benchmark synchronization

Related publication: Birte Friesel, Lennart Kaiser, and Olaf
Spinczyk. “Automatic Energy Model Generation with MSP430

EnergyTrace”. In: Proceedings of the Workshop on Benchmarking
Cyber-Physical Systems and Internet of Things. CPS-IoTBench ’21.
Nashville, TN, USA: Association for Computing Machinery,
May 2021, pp. 26–31. isbn: 978-1-4503-8439-1. doi: 10.1145/
3458473.3458822 [FKS21]

While performing energy measurements can be as simple as using
an oscilloscope and a shunt resistor, manual measurement analysis
is a tedious and error-prone task [YF09]. Automation makes it less
tedious, but more complex: it relies on test fixtures that measure
energy attributes of the target peripheral while keeping track of the
active function call or hardware state, thus synchronizing energy
measurements to benchmark events. Many approaches use GPIO pins
or the Universal Asynchronous Receiver/Transmitter (UART) interface to
achieve this task.

For the GPIO variant, in the simplest case, the benchmark program
toggles a GPIO pin whenever entering or leaving a hardware state.
The pin is connected to a digital input of the measurement device,
which keeps track of the input level and thus is able to detect state and

https://doi.org/10.1145/3458473.3458822
https://doi.org/10.1145/3458473.3458822
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transition boundaries. Some approaches use multiple GPIO pins to
encode state or transitions identifiers, making the system more robust
against non-deterministic behaviour [AH09].

In the UART variant, the benchmark program logs the start and end
of transitions between device states on the serial interface, and the
measurement device keeps track of those [Lim+

13]. However, UART
output affects energy usage and timing behaviour of the device under
test. While using on-board timers to measure the duration of states
and transitions is a partial remedy, UART-based synchronization is
still more challenging than using GPIO pins.

Both of these methods rely on the availability of GPIO or UART
signals for out-of-band synchronization. They cannot be used when
the DUT does not expose them or when the measurement equipment
cannot capture them. A factor contributing to the latter is that profes-
sional measurement equipment that supports out-of-band signalling
is often expensive (thousands or even tens of thousands of euros) or
has to be built in a do-it-yourself (DIY) manner.

While a DIY solution may be very affordable (tens to hundreds of
euros), it is still expensive in terms of the time users have to invest in
order to obtain a working and sufficiently accurate measurement de-
vice. External factors that require researchers and university students
to work from home, such as a global pandemic, further exacerbate
this issue: now, everyone must have their own device for performing
energy measurements, and accidents could lead to a multi-thousand
dollar manufacturer service bill or multi-hour manual repair.

I took this as an opportunity to look into methods for automated
energy measurements that exclusively rely on in-band synchroniza-
tion methods, and are thus compatible with commercial off-the-shelf
equipment that is affordable in terms of money and time. The Energy-
Trace technology embedded in $20 apiece MSP430FR5994 LaunchPad
evaluation boards serves as case study and evaluation target.

The next sub-sections explain what EnergyTrace is, how it works,
how accurate it is out of the box, and how calibration and drift com-
pensation can further improve its accuracy and automation capabilities.
Apart from an in-depth analysis of EnergyTrace, the key contribution
is a generic synchronization and drift compensation method that is ap-
plicable to any kind of measurement equipment that does not support
(or have access to) out-of-band synchronization signals.

5.2.1 EnergyTrace

MSP430 LaunchPads are a family of evaluation boards for 16-bit
ultra-low-power TI MSP430 microcontrollers. They are commercially
available for less than $20 and augment the microcontroller with
a programming and debugging interface and, in many cases, the
EnergyTrace energy measurement system. All of these components
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1
2

3

4

(a) Host MCU 1⃝, Ener-
gyTrace circuit 2⃝, jumper
links 3⃝, and target MCU 4⃝.

(b) Test fixture for automated
energy benchmarks on a
BME680 air quality sensor.

Figure 5.1: An MSP430FR5994 LaunchPad with its most relevant components
annotated (left) and a typical energy measurement setup (right).

Figure 5.2: Simplified EnergyTrace DC-DC converter schematic [TI16]. The
EnergyTrace MCU monitors the output voltage (+3V3) and regu-
lates the inductor L (via transistor Q) in response to it.

are built into the LaunchPad. From a user perspective, EnergyTrace
consists of two parts: the control and measurement circuitry and
firmware on the LaunchPad, and the client library.

Hardware

An MSP430FR5994 LaunchPad contains three MSP430 Microcontroller
Units (MCUs): the MSP430FR5994 itself (target MCU), an MSP430F5528

(host MCU) for programming, debugging and USB-to-UART interfac-
ing, and an MSP430G2452 (EnergyTrace MCU) connected to a DC-DC
converter that powers target MCU and peripherals [TI16]. This allows
it to perform energy measurements of target MCU and peripherals
without any external components. Fig. 5.1 shows the location of these
microcontrollers on a LaunchPad, and how to connect a BME680 air
quality sensor (see Section 3.6.2) for energy measurements. The upper
third of the board contains debugging and energy measurement cir-
cuitry, and can be decoupled from the target MCU using jumper links.
The lower two thirds contain target MCU and peripheral connections.
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The DC-DC converter powers the entire bottom part of the board:
the target MCU and all peripherals that are connected to its 3.3 V
pins (here: the BME680 sensor). It operates as an inductive charge
pump (see Fig. 5.2) that monitors the output voltage (+3V3) of a buffer
capacitor (C) and uses a switch (Q) to briefly charge an inductor (L)
whenever the output voltage drops below a threshold. This allows it
to convert USB voltage (4.5 to 5.2 V) to a near-constant output voltage
that oscillates in a tight range around 3.3 V.

Conventional DC-DC converters use an integrated circuit for voltage
monitoring and switch control. EnergyTrace replaces this IC with the
EnergyTrace MCU and can therefore keep track of the frequency and
duration of charge pulses (i.e., the time during which Q is connected).
Each pulse transfers a known amount of energy, allowing it to calculate
the energy usage of target MCU and peripherals.

Note that host MCU and EnergyTrace MCU also require a 3.3 V
power supply for operation. This one is not part of the DC-DC con-
verter, but instead provided by a conventional linear regulator that
does not provide feedback signals for energy measurement.

Software

TI does not provide source code for the firmware running on host
and EnergyTrace MCU; they likely intend EnergyTrace to be used
only with their in-house development environments. This is helpful
for developers who want to quickly assess the energy behaviour of
their application and target hardware, but not so much for automated
measurements.

The libmsp430 client library that runs on a desktop or laptop com-
puter and interfaces with a connected LaunchPad is closed-source
as well. Still, it provides an API to the EnergyTrace sub-system that
can start and stop measurements and accepts a callback function. It
calls this function periodically and passes a buffer that contains a
variable-length list of EnergyTrace events. Each event i contains

• a 32-bit timestamp Ti (1 µs per least significant bit),

• a 32-bit current Ii (1 nA),

• a 16-bit voltage Ui (1 mV), and

• a 32-bit cumulative sum of energy Ei (100 nJ).

The open-source EnergyTrace CLI project3 provides a command-line
application for energy measurements built on top of this API. It starts
a measurement, writes timestamp, current, voltage, and energy data
to its standard output, and stops the measurement after a specified
time has elapsed or once it receives a termination signal.

3 https://ess.cs.uos.de/git/software/energytrace-util

https://ess.cs.uos.de/git/software/energytrace-util
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The cumulative sum of energy is the total amount of energy trans-
ferred since the start of the measurement. By default, it also refers
to the total amount of energy spent during program execution, as
the host MCU resets the target MCU when starting an EnergyTrace
measurement. Current and voltage appear to be momentary readings
taken at the corresponding timestamp instead. Considering that the
EnergyTrace hardware measures voltage and energy, but not current,
Ii is likely calculated by the firmware on the LaunchPad or by the
libmsp430 client on the computer.

For PPTA generation, total energy is not helpful – instead, we need
a series of power values that we can map to hardware states and
function calls. With the provided EnergyTrace events, there are two
ways of calculating those: using momentary values (Pi = Ui · Ii), or by
looking at average power in the interval [Ti−1, Ti]. The latter relies on
interval duration ∆Ti = Ti− Ti−1 and per-interval energy consumption
∆Ei = Ei − Ei−1. As we do not know the EnergyTrace-internal relation
between event contents, it will be interesting to see whether these two
approaches lead to identical results.

P[i−1,i] =
∆Ei

∆Ti

?
= Ui · Ii = Pi

5.2.2 Baseline Evaluation

MSP430 LaunchPads are designed as evaluation boards rather than
production equipment, hence the EnergyTrace sub-system does not
come with any kind of performance or accuracy guarantees. The first
evaluation questions relate to the reported energy and current data:
how accurate are they, and are they credible in the first place? To
answer this, I used eight identical MSP430FR5994 Rev 1.2 LaunchPads
bought between 2016 and 2020, running firmware version 31200000

and libmsp430.so version 31200004.

API Data

Preliminary tests indicated that the EnergyTrace firmware and/or
client library perform post-processing (low-pass filtering) of some
measurement properties before providing them via the API. Addition-
ally, UART output may be buffered by the host MCU’s USB-to-UART
interface rather than provided in real-time, which affects its usability
for benchmark synchronization. So, before performing actual energy
benchmarks using a separate, calibrated source/measure unit, let us
look into the USB traffic between client library and firmware, and
compare it with reported API events.

The benchmark program for this evaluation part puts the target
MCU into a low-power sleep state and wakes up periodically to toggle
an on-board Light-Emitting Diode (LED) and write data to UART.
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Figure 5.3: Voltage and duration as reported by the EnergyTrace API.

Wakeup frequency and UART write size vary between benchmark
runs, but are constant within each run. I used the Wireshark utility
to monitor USB communication between host and LaunchPad while
running the benchmark, and cross-referenced it with API output and
expected benchmark behaviour later.

The first observation is that the USB interface transmits EnergyTrace
readings in groups of five samples each, at a rate of about 750 Hz.
Each sample contains a timestamp, voltage, and cumulative energy
reading, with a mean sample rate of 3.75 kHz. The host MCU also
buffers UART writes from the target MCU, and flushes them to the
USB interface once 64 bytes have accumulated or a timeout of at least
60 ms has expired. USB transmissions that contain EnergyTrace and
UART data use a low-priority USB bulk transfer mode that does not
provide real-time guarantees.

This already provides an answer to the synchronization question:
UART messages alone are only suitable for applications that can
handle timing uncertainty on the order of 100 ms. Anything with
higher accuracy requirements, e.g. function calls that only take a
few milliseconds to execute or short intermediate states, must use
a different synchronization mechanism to map energy readings to
benchmark events. However, a GPIO-based synchronization method
such as the one used in MIMOSA is not available here.

The client-side EnergyTrace library also appears to perform non-
trivial post-processing of time, voltage, and energy data provided
by the LaunchPad before passing it on to API consumers. While the
benchmark shows that each USB event corresponds to exactly one
EnergyTrace API event (and vice versa), the relation between a sample
in USB traffic and the corresponding API reading is neither left- nor
right-unique. Identical voltage, time, and energy values in USB traffic
may lead to different API values, and vice versa.

On the timing side, both USB traffic and API output show that
EnergyTrace samples are not equidistant. The first sample in each
group of five samples typically has a timestamp that is about 400 µs
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behind its predecessor, whereas the remaining four typically occur 210
or 270 µs later. Outliers go up to 690 µs; see Fig. 5.3(a) for a histogram
of observed ∆Ti values. The USB interface also appears to transmit
timestamps with varying resolution. While more than 99 % of duration
values (∆Ti) use a resolution of 650 ns per least significant bit, there
are additional clusters around 1, 1.5, and 2.5 µs.

The USB interface likely transmits voltage readings as a millivolt
number. I observed values from 3259 to 3297, whereas the API only
reported 3289 and 3290 mV (see Fig. 5.3(b)). I assume that this is the
result of a low-pass filter in the client library. The mean deviation of
API-provided voltage readings from raw USB data (assuming that it
is is indeed transmitted in millivolt) is 11 mV.

Cumulative energy values in raw USB traffic have a mean resolution
of 365 nJ per least significant bit. In low-power situations, the finest
granularity I observed was an API energy difference of 200 or 300 nJ
per least significant bit in USB traffic. During periods with very low
power consumption, individual samples (both in USB traffic and in
API readings) may report ∆Ei = 0, as the DC-DC switching frequency
has fallen below the sample rate.

Overall, energy values in USB traffic appear to have the least direct
connection to API output. Most notably, they are not monotonic, with
about one in 50,000 samples being lower than its predecessor. If they
represented actual cumulative energy, this would indicate a negative
energy flow, which is highly unlikely. The corresponding API values
are monotonic and consistent with expectations.

Finally, USB traffic does not contain current readings, so they must
be calculated by libmsp430 from time, voltage, and energy data. They
appear to be filtered and downsampled to 10 to 750 Hz, depending
on average DUT power consumption: the lower its power draw, the
lower the effective sample rate. So, Pi ̸= P[i−1,i], and Pi = Ui · Ii is
not helpful for energy measurements. The remainder of this section
derives current and power from energy readings instead:

I[i−1,i] =
∆Ei

Ui · ∆Ti
P[i−1,i] =

∆Ei

∆Ti

Energy Measurement Accuracy

Next, let us compare I[i−1,i] readings to an external source/measure
unit that serves as calibration device. As a preliminary evaluation
showed that the usable range of EnergyTrace covers 0 to about 25 mA,
the following evaluation is limited to 0 to 10 mA.

benchmark This series of measurements does not involve a time-
sensitive benchmark application or peripherals. Instead, the bench-
mark program simply puts the microcontroller into a low-power sleep
mode (LPM2 without wake-ups). A programmable current sink, con-
nected in parallel to the target MCU, is responsible for benchmark
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execution. Apart from 2.4 µA (8 µW) caused by the target MCU’s sleep
mode power consumption, all current flowing through the Energy-
Trace circuit is also seen by the current sink.

The current sink is provided by a Keysight N6785A Source/Measure
Unit (SMU) and controlled by a Keysight N6705B DC Power Analyzer.
I configured its built-in arbitrary waveform generator for a trapezoid
sink current function. After ten seconds at 0 mA, it ramps up to 10 mA
(33 mW) over a 90-second interval, waits 20 seconds, and takes another
90 seconds to ramp down to 0 mA. It repeats this cycle four times,
resulting in 14 minutes worth of benchmark data per device, and
logs voltage and actual sink current to a USB flash drive. Due to the
discrete nature of the current sink, ramp-up and ramp-down consist
of 99 constant-current steps. Each step increases or decreases current
by 101 µA (333 µW) and lasts for about 909 ms.

To avoid interference from a ground loop between the computer
connected to the LaunchPad and the power analyzer, the computer
ran on battery power without wired Ethernet. I also inserted a low-
dropout Schottky diode between the LaunchPad’s 3V3 pin and the
SMU to avoid damage to the LaunchPad – otherwise, the SMU might
back-power it when configured for a sink current of 0 mA. While
this decreases the voltage observed at the SMU, it has no effect on
the current. I did not take measures to minimize electromagnetic
interference or thermoelectric effects, as I expect EnergyTrace to be
used without such measures as well.

Finally, for a verification measurement, I replaced the LaunchPad
with an N6784A SMU (built into the same power analyzer) operating
as a current source. In this case, the power analyzer logged sink and
source currents, and I expect the readings to be nearly identical. In the
configuration used in these benchmarks, the current ranges of both
source/measure units have a specified accuracy of 0.025 % + 10 µA.
So, leaving electromagnetic and thermoelectric interference aside, the
difference between source and sink current should be no more than
25 µA at 10 mA sink current, and 20 µA in the µA range.

observations I used the PELT changepoint detection algorithm
(as implemented in the Python3 ruptures module) to automatically
detect changes in sink current, and thus split benchmark results into
individual constant-current segments [TOV20; KFE12]. I averaged the
current in each segment to allow for a comparison of expected and
actual current readings over the entire 10 mA measurement range.

First of all, the verification measurement exhibits an offset between
source and sink current of up to 43 µA in the micro-ampere range, and
33 µA (2.3 %) beyond 800 µA. The micro-ampere deviation is twice
the expected maximum error of 20 µA, whereas the disagreement in
the milli-ampere range is only slightly higher than anticipated. With
the environmental factors that can affect micro-ampere readings in
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Figure 5.4: Histogram of EnergyTrace measurement error. Each colour indi-
cates a different LaunchPad board; bin size is 1 µA.

mind, I consider these results, and thus the measurement setup, to
be acceptable. So, I expect the following EnergyTrace results to be
accurate within at least 43 µA as well.

Using EnergyTrace as-is, with just the on-board calibration that it
performs automatically, results in a maximum absolute measurement
error of 210 µA. Relative error depends on the current range: it is up to
6.9 % below 500 µA and nearly constant (up to 2.9 %) between 500 µA
and 10 mA. For some boards, the error is below 1 % in this range.
Fig. 5.4(a) shows the individual error distributions.

With additional external calibration at 10 mA sink current, absolute
error decreases to 53 µA. The maximum relative error now is 5.2 %
below 500 µA, and 1.2 % above. Fig. 5.4(b) shows details for individual
LaunchPads.

5.2.3 Benchmark Synchronization

At this point, we know that EnergyTrace is capable of measuring
the mean current in 200- to 600-microsecond intervals with an error
in the lower microampere range. We also know that UART output
is not suitable for synchronizing with EnergyTrace events due to
buffering and non-realtime USB transfers. I will now explain how
my synchronization algorithm manages to perform automated energy
measurements under these circumstances by combining in-band sig-
nals with an on-board timer and delayed (i.e., not timing-relevant)
UART communication.

First off, the benchmark application must ensure that the start and
end of benchmark execution are associated with a fixed-duration
interval of near-constant power usage. On the LaunchPad, this works
by turning on its on-board LEDs for a specific amount of time while
keeping the CPU idle and having no active background tasks.

The resulting power usage spikes have a known duration and value.
The first one occurs in a well-defined time range at the start of the
energy benchmark, whereas the last one is the last spike that is visible
in measurement data – once the benchmark is through, it puts the
CPU into an idle loop with near-constant power usage. Hence, the
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Figure 5.5: An nRF24L01+ energy benchmark with an in-band synchroniza-
tion signal (tinted area) and state/transition boundaries recon-
structed from on-board timer data (dashed bars). Each bar repre-
sents a timer restart; the first one coincides with the end of the
in-band benchmark start signal.

synchronization algorithm can identify the start and stop timestamps
of both in-band synchronization signals.

On top of this, the benchmark application must use a built-in micro-
controller timer to count the number of CPU cycles spent in each driver
function call (transition) and between each pair of consecutive function
calls (hardware state), and log cycle counts and transition IDs to an in-
memory data structure. This works by reading and then restarting the
timer at the start and end of each transition, thus ensuring that timing
data is available for the entire runtime of the benchmark application.
Timer control and data logging has a negligible execution time and
energy usage overhead, so this does not affect benchmark results.

The benchmark then logs timing data and function calls via UART or
another suitable communication interface after each word w ∈ Lk(A)
(i.e., after each series of function calls that starts with an initialization
function, see Section 3.4). By placing log output within the UNINI-
TIALIZED state between two consecutive words w ∈ Lk(A), its time
and energy overhead also does not affect benchmark results.

Finally, when analyzing benchmark results, the synchronization al-
gorithm combines the in-band signals for benchmark start and bench-
mark end with the UART logs that identify the duration (and, thus,
relative timestamp) of each PFA state and transition.

The on-board timer starts right at the end of the in-band benchmark
start signal, and stops at the beginning of the in-band benchmark end
signal. Hence, benchmark and UART timestamps for these two events
are known, and the synchronization algorithm can use linear interpo-
lation to calculate benchmark timestamps for all intermediate UART
timestamps. Thus, it knows the benchmark timestamps of the start
and end of each function call and hardware state. Fig. 5.5 illustrates
an in-band synchronization signal and state/transition boundaries
reconstructed from on-board timer signals while benchmarking an
nRF24L01+ radio chip using EnergyTrace.

I have implemented this in dfatool’s generate-dfa-benchmark.py

script; it can be enabled with the --energytrace=sync=timer switch.
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Combined with a light-weight operating system, such as Multipass,
this allows for automated energy measurements using just a Launch-
Pad and a DUT (see Fig. 5.1(b)).

5.2.4 Timing Accuracy

At this point, the synchronization algorithm assumes that benchmark
and UART timestamps come from a perfect clock source that always
has precisely the same frequency. In practice, this is not the case: clock
frequency is affected by temperature and other environmental factors,
and may change (drift) over time.

For applications with a single clock source, that is not much of
an issue. However, the synchronization algorithm works with two
different sources: one provided by the energy measurement device
(here: EnergyTrace MCU), and one provided by the microcontroller
executing the benchmark application (here: target MCU). Inaccuracies
in either clock affect the synchronization between energy measure-
ments and benchmark events. If both drift in a different manner, the
calculated benchmark timestamps become less accurate the further
they are away from the synchronization points at the start and end of
the benchmark. We will now examine how much of an issue this is on
the MSP430FR5994 LaunchPad.

The EnergyTrace MCU obtains its clock signal from an ordinary
quartz crystal; these typically come with an error of ± 30 to 100 ppm.
The target MCU has two clock systems that are suitable for high-
frequency operation: A Digitally Controlled Oscillator (DCO), and an
optional High-Frequency External Crystal Oscillator (HFXT). I am not
aware of detailed DCO circuitry documentation or accuracy figures
and expect that it focuses on low cost rather than high accuracy.

The HFXT crystal is not populated by default, so the HFXT variant
does not strictly fall within commercial off-the-shelf hardware. Still, I
was curious to find out how it compares to DCO performance and the
drift compensation algorithm outlined in the next section, and added
a 16 MHz HFXT crystal as well as two 22 pF capacitors to one of the
evaluation boards. This is an ordinary crystal as well, so it also has an
expected tolerance of ± 30 to 100 ppm, depending on manufacturer.

A benchmark event in the middle of a 200 s benchmark has a dis-
tance of 100 s to either synchronization point. Assuming conventional
quartz crystals with up to 100 ppm tolerance, both EnergyTrace and
target MCU time signals have an uncertainty of up to 10 ms in the
middle of the benchmark. In the worst case, with −100 ppm on one
and +100 ppm on the other clock, the synchronization error can be
up to 20 ms. For accurate measurements of millisecond signals, this
would be a deal-breaker. However, before looking into solutions for
that, let us first examine whether it is an issue in practice.
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benchmark The evaluation uses a custom driver that interfaces
with the LaunchPad’s on-board LEDs. Each driver function flashes
an LED for a specific duration, ranging from 100 µs to 10 ms. Its PFA
consists of a single IDLE state, and one transition from IDLE to IDLE
for each LED flash function. The driver does not do anything else.

The benchmark program logs the measured duration and name (i.e.,
expected duration) of each driver function call; the points at which it
dumps its log over UART are also known. Apart from the benchmark’s
in-band start/end synchronization signals, driver function calls and
UART dumps are the only reasons for energy usage beyond the
MSP430’s idle power consumption in this setup. Hence, if mean power
in an EnergyTrace reading exceeds 2 mW, the benchmark is either
executing a PFA transition or performing a UART dump. As the
order of transitions and UART dumps is known, a computer program
can filter out UART dumps and thus determine the EnergyTrace
timestamps of each state and transition in the benchmark. The 2 mW
threshold is low enough to reliably detect 100 µs LED flashes, even
though each sample covers an interval of up to 690 µs.

In this setup, each benchmark performs 2500 transitions, and total
benchmark duration depends on the idle times between transitions. It
ranges from 31 to 256 seconds. I executed each DCO benchmark on
three different LaunchPads, with five benchmark runs per LaunchPad.
The HFXT benchmark was limited to a single LaunchPad.

This leaves us with two series of timestamps for each benchmark
run: one that has been calculated from EnergyTrace and timer data
and may be affected by clock drift, and one that has been taken directly
from EnergyTrace data. By comparing the timestamps of each event,
we can determine clock drift over time.

observations The maximum distance between a benchmark event
and the next synchronization point in these benchmarks is 128 s, so
the expected worst-case error for two quartz oscillators with 100 ppm
deviation each is 25.6 ms. The observations do not come close to this.
For the DCO variant, the maximum deviation between two consecutive
readings is 83 ppm, and the maximum total error is 6.2 ms. For HFXT,
it decreases to 73 ppm (2.49 ms).

Fig. 5.6 shows a histogram of DCO and HFXT error as well as DCO
drift. We see that, while many timestamps are close to reality, there is
a sizeable amount of timestamps with an error of more than 1 ms. For
measurements of function calls with a duration on the order of one
millisecond to tens of milliseconds, this is not ideal.

It is likely that benchmark synchronization faces similar challenges
on hardware components other than MSP430FR5994 and EnergyTrace.
However, there is an algorithmic way around this.



5.2 energy benchmark synchronization 91

−5 0 5
0

200

400

Deviation [ms]

C
ou

nt

(a) Error distribution for DCO
(blue) and HFXT (red, overlaid)
timestamps.

0 50 100 150 200 250
Measurement Timestamp [s]

−40
−30
−20
−10

0
10
20
30
40

Ti
m

es
ta

m
p 

Er
ro

r [
pp

m
]

Run 0
Run 1
Run 2
Run 3

(b) Synchronization error of individual events on
a single LaunchPad, using DCO timestamps.

Figure 5.6: Synchronization error of 256-second EnergyTrace benchmarks.

5.2.5 Drift Compensation

Changepoint detection is a versatile, general-purpose method of identi-
fying changes such as sudden benchmark power consumption devia-
tions in a data series. It has already been used to identify the different
current levels imposed by the source/measure unit in Section 5.2.2.

As changes between hardware states and function calls often come
with an observable change in power consumption, changepoint de-
tection may be able to identify those as well, and thus improve syn-
chronization between benchmark events and benchmark timestamps.
It is not a trivial solution, though: changepoint detection algorithms
require hyper-parameter fine-tuning and may deliver false positives
and false negatives. Hence, I devised the following drift compensation
algorithm on top of changepoint detection and on-board timer logs.

concept Even if precise event timestamps are not known a priori,
the range in which they occur is. Maximum clock error is a function of
oscillator specifications and the time difference from/to the start/end
of the benchmark application, whichever is lower. As the observations
above show, for a few minutes worth of data, the actual benchmark
event is always within a ±10 ms window around the uncompensated
timestamp determined from on-board timer logs.

Assuming that the start and end of each driver function call coin-
cides with observable changes in energy usage, each changepoint in this
window is a candidate for the actual (compensated) event timestamp.
There may be candidates that do not correspond to a benchmark event,
and there may also be benchmark events without observable changes
in energy usage (and, thus, with an empty candidate list). However, we
can exploit the fact that synchronization error is bounded and evolves
over time. Two consecutive benchmark events must have a similar syn-
chronization error, and if we know the deviation for event n, then the
deviation of events n− 1 and n + 1 must be nearly identical. The task
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Figure 5.7: A write function call within an nRF24L01+ energy benchmark
with uncompensated state/transition timestamps reconstructed
from on-board timer data (Ti, solid bars), corresponding intervals
for changepoint detection (tinted areas), changepoints (ci,j, dotted
bars), and compensated timestamps (T̂i, dashed bars).

of drift compensation is to solve the optimization problem defined by
these considerations: “minimize the change in synchronization error
between consecutive measurements.”

Fig. 5.7 illustrates this approach for the write function provided
by the nRF24L01+ radio driver. Here, the radio chip is configured for
up to ten automatic retransmissions, hence the graph shows eleven
transmission spikes with delays in-between. All of these spikes are
part of a single write function call.

As we see, the uncompensated benchmark timestamps Ti, Ti+1 are
off by about 2 ms. Changepoint detection identifies two changepoints
ci,1, ci,2 for the first benchmark event, and a single changepoint ci+1,1 for
the second one. As the deviation between Ti and ci,1 is nearly identical
to the deviation between Ti+1 and ci+1,1 (i.e., Ti − ci,1 ≈ Ti+1 − ci+1,1),
whereas ci,2 is much closer to Ti, the compensated event timestamps
are T̂i := ci,1 and T̂i+1 := ci+1,1.

interpolation At first glance, devising a formal algorithm for
this approach seems like a simple task. Let {T1, . . . , Tn} be the uncom-
pensated benchmark timestamps of events one through n, where T1

is the start of the benchmark (i.e., the end of the in-band start signal)
and Tn is the end (i.e., the start of the in-band end signal). Perform
changepoint detection within a 20 ms window around each timestamp
Ti, using the PELT algorithm [KFE12]. Let Ci be the set of changepoints
(candidates) it has determined for each event i ∈ {2, . . . , n− 1}. By
construction, timestamps T1 and Tn have an error of zero, so C1 = {T1}
and Cn = {Tn}. Finally, select compensated event timestamps T̂i ∈ Ci
so that the following cost function is minimal.

n−1

∑
i=1

⃓⃓
(T̂i − Ti)− (T̂i+1 − Ti+1)

⃓⃓
(5.1)

However, this function does not consider benchmark events without
observable changes (Ci = ∅), and also does not account for events
where changepoints have been detected, but do not contain the correct
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event timestamp (T̂i ̸∈ Ci). Handling these requires skipping individ-
ual changepoint sets and interpolating between neighbours instead.
In this case, the synchronization error of the compensated event times-
tamp T̃i is the average of the synchronization error of the previous
and the following event.

T̃i = Ti +
1
2
(︁
T̂i−1 − Ti−1 + T̂i+1 − Ti+1

)︁
(5.2)

By expressing changepoint sets Ci as nodes in a weighted directed
graph, the drift compensation algorithm can interpolate between miss-
ing or incorrect changepoints while still minimizing the change in
synchronization error between consecutive measurements. The key
idea is to define one node for each candidate within Ci, and have
an edge u → v if and only if u belongs to event i and v belongs to
event i + 1 or i + 2. For i → i + 1 edges, the weight expresses the
difference in synchronization error, and for i→ i + 2 edges, the weight
is the difference in synchronization error plus an interpolation penalty.
This ensures that the algorithm only performs interpolation when
necessary. With this setup, obtaining compensated event timestamps
is as simple as using Dijkstra’s algorithm to find a shortest path from
benchmark start to benchmark end, and looking at the nodes it passes.

algorithm Let Ti, T̂i, and Ci be defined as before. Build a weighted
directed graph (V, E, w) consisting of nodes V, edges E ⊆ V2, and
weights w : E→ R≥0 as follows.

V =
n⋃︂

i=1

Ci

E = {(u, v) | ∃i : (u ∈ Ci−1 ∪ Ci ∧ v ∈ Ci+1)}

w(u, v) =

⎧⎨⎩|(u− Ti)− (v− Ti+1)| if u ∈ Ci ∧ v ∈ Ci+1

|(u− Ti−1)− (v− Ti+1)|+ 270 µs u ∈ Ci−1 ∧ v ∈ Ci+1

Determine the shortest path {T1, v1, v2, . . . , vm, Tn} from T1 to Tn.
Each path element (u, v) connects two candidates for compensated
event timestamps: one from the set Ci (or Ci−1), and one from the set
Ci+1. So, set T̂i := u (or T̂i−1 := u) and T̂i+1 := v. If u is from the set
Ci−1, there is no suitable changepoint in Ci: set T̂i := T̃i instead (see
equation 5.2).

The 270 µs penalty for skipping a changepoint set corresponds to
the average interval between EnergyTrace measurements. If needed,
this method can be extended for skipping k set of changepoints. If
u ∈ Ci−k ∧ v ∈ Ci+1, the edge weight is:

w(u, v) = |(u− Ti−k)− (v− Ti+1)|+ k · 270 µs (5.3)
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(b) Synchronization error of individual events on
a single LaunchPad.

Figure 5.9: Synchronization error of 256-second EnergyTrace benchmarks
with drift compensation.

Fig. 5.8 shows an example of the nodes in the event candidate
graph and the compensated event timestamps selected by a shortest
path search, using benchmark data from Section 5.2.4. Each column
represents a changepoint set Ci. We see that the shortest path con-
tains several interpolation edges (i.e., edges T̂i−1 → T̂i+1) where the
algorithm did not find suitable changepoints T̂i.

evaluation Applying the drift compensation algorithm to the
observations used in Section 5.2.4 yields a maximum synchronization
error of just 0.95 ms (see Fig. 5.9), independent of clock source and
benchmark duration. This is close to EnergyTrace’s horizontal resolu-
tion of 690 µs, indicating that drift compensation will likely perform
better on measurement equipment with a higher resolution.

In case of MSP430FR5994 and EnergyTrace, the drift compensation
algorithm correctly annotates at least 90 % of any function call that has
a duration of at least 10 ms, and more than 99 % of hardware states
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that typically last at least 100 ms. The built-in DCO clock source is
sufficient and users do not need to populate the HFXT crystal. An
implementation of the algorithm is available as part of my open-source
msp430-etv4 and dfatool5 projects.

While these are promising results, drift compensation is not without
limitations. The algorithm relies on the majority of state and transition
boundaries having observable effects when it comes to energy usage,
and also assumes that those are the only cause of such effects. Systems
that run other loads in parallel and function calls that do not affect
energy usage can degrade its performance.

Still, I can give a positive answer to RQ1: automated energy mea-
surement without access to out-of-band synchronization is feasible.
We have also seen that $20 worth of hardware can go a long way –
personally, I consider EnergyTrace an ideal solution for student labs
(where the focus lies on handing out many devices and letting stu-
dents gather hands-on experience rather than absolute accuracy of
results) and quick, qualitative measurements. I also found this method
to be helpful during the coronavirus pandemic that took place during
my PhD studies. Carrying tens of kilograms of equipment back and
forth between home and office is decidedly less convenient than just
taking a LaunchPad.

Alternatives

Some LaunchPads, including the MSP430FR5994 variant, support an
enhanced EnergyTrace technology known as EnergyTrace++. Here,
EnergyTrace MCU and host MCU work together to annotate each En-
ergyTrace sample with the current status of the target MCU’s built-in
components. At first glance, this makes it an ideal utility for bench-
mark synchronization. The target MCU is only awake during function
calls and asleep otherwise, so the status annotations in EnergyTrace++
allow for determining state and transition boundaries. As they are
part of the EnergyTrace events logged by the EnergyTrace MCU, there
are no clock synchronization issues.

However, in contrast to EnergyTrace, using EnergyTrace++ affects
the target MCU and thus timing and energy properties of the bench-
mark application. The host MCU needs to use the target MCU’s debug
interface to read its status, which costs energy and pauses CPU execu-
tion while the interface is active [FG14]. EnergyTrace++ also operates
at a lower sample rate of about 1.1 kHz compared to EnergyTrace’s
3.75 kHz. I was unable to obtain satisfactory results with it.

Another approach is to use an external logic analyzer instead of
the built-in cycle timer for synchronization. While this works, I found
no improvement over internal DCO measurements. Neither uncom-
pensated error (105 ppm / 6.07 ms) nor error after drift compensation

4 https://ess.cs.uos.de/git/software/msp430-etv
5 https://ess.cs.uos.de/git/software/dfatool

https://ess.cs.uos.de/git/software/msp430-etv
https://ess.cs.uos.de/git/software/dfatool
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(0.94 ms) were notably better. Moreover, using an external logic ana-
lyzer increases cost and complexity of the measurement setup, and
relies on the DUT exposing suitable GPIO pins.

5.2.6 Related Work

The drift compensation component of my synchronization algorithm
has been inspired by an energy measurement method proposed by
Cherifi et al. [Che+

17]. Their method also uses changepoint detection
to identify hardware state changes, and adds a clustering step to
transform observed state changes into a state machine model. While
this has the advantage of not requiring a user-provided PFA model,
it is unsuitable for driver functions that do not cause an observable
change in energy consumption. It is also incapable of expressing the
influence of configuration parameters, and generates one hardware
state for each configuration with distinct energy attributes instead.

Apart from that, publications that cover automatic energy model
generation without out-of-band signals typically focus on smartphones
and laptops. Those have built-in battery management units that pro-
vide energy measurement capabilities as a side effect. For instance,
DevScope manages to get by with 104 µA sensing resolution and an
update rate of just 0.28 Hz [Jun+

12]. It performs workload- rather than
state machine-based energy modeling, and is able to work around
the battery management system’s low update rate by automatically
measuring a wide range of workloads for a sufficient amount of time.

Additionally, there is a body of research on building and testing
custom measurement devices. While most of those rely on the avail-
ability of out-of-band synchronization signals, they still offer a useful
combination of low cost and high accuracy, and may fill niches that
commercial devices do not address.

iCount employs a trick to work with nearly unmodified off-the-
shelf components. By soldering a single connection to an already-
present DC-DC converter’s feedback pin, the microcontroller running
the benchmark application can measure the converter’s switching
frequency and duty cycle, and thus calculate the amount of transferred
energy [Dut+

08]. This is similar to EnergyTrace, but uses passive
observation rather than active control of switching behaviour. At a
measurement error of up to 20 %, it is far less accurate.

EnergyBucket achieves less than 2 % measurement error over 1 µA
to 50 mA, at an estimated cost of $60 plus assembly and calibration
time [AH09]. It uses a pair of capacitors as charge pumps by discharg-
ing a capacitor to a fixed threshold and logging the time it takes from
start of discharge to reaching the threshold. As soon as the threshold is
reached, EnergyBucket switches over to the other (full) capacitor and
re-charges the previously discharged one. While this comes with low
hardware cost, it also results in an energy consumption-dependent
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measurement interval. Over its specified current range, the time reso-
lution of energy readings ranges from 1.1 kHz to just 0.005 Hz.

The MIMOSA board (Section 3.6.1) also falls in this category [BGS13].
It is more expensive and sophisticated than EnergyBucket, using a
set of three capacitors and a current mirror that imprints the current
flowing to the device under test onto a capacitor. Each capacitor is
charged, read, and then discharged in turn. With an error of less than
10 µA and a constant sample rate of 100 kHz, it is one of the most
accurate do-it-yourself devices I know.

RocketLogger has a documented error of no more than 0.09 % at
up to 500 mA and a maximum sample rate of 64 kHz [Sig+

17]. In
contrast to MIMOSA, EnergyBucket, and EnergyTrace, it performs
power measurements at discrete points in time rather than measuring
energy over intervals, so it is unable to identify spikes in energy usage
that are shorter than its sample rate. With about $50 worth of hardware
components, it is very affordable.

FlockLab focuses on testing several networked devices at once,
which is helpful for energy measurements of wireless sensor net-
works [Lim+

13]. Similar to RocketLogger, it performs discrete power
measurements at a sample rate of 28 or 56 kHz. It is accurate within
10 % at 100 µA and has an error of less than 0.5 % beyond 500 µA.

Finally, Spot combines a shunt resistor with a voltage-to-frequency
converter to catch energy usage transients independent of sample
rate [Jia+

07]. It consists of readily available components and achieves
an error of less than 1 µA.

Overall, we see that few research works address the challenge of
measurement automation without out-of-band signals. The only exam-
ples that I am aware of are smartphone- and laptop-centric solutions
that rely on battery management systems, and the method proposed
by Cherifi et al. None of these is suitable for the energy modeling
methods used in this thesis. Apart from that, research focuses on
custom measurement devices and either does not consider benchmark
synchronization or uses out-of-band signals.

5.3 chapter summary

We are now able to automatically obtain sets S = {(x⃗1, y1), (x⃗2, y2), . . . }
of configurations and corresponding performance attributes. My open-
source dfatool project can do so for both fields covered in this chapter:
Kconfig-based software product lines, and states and transitions of
configurable hardware components.

When it comes to hardware components, we have seen that syn-
chronization of benchmark events and observed power readings still
poses a challenge, especially when no out-of-band signalling meth-
ods are available. This issue is most prominent in DUTs that do not
provide access to GPIO pins or when using affordable off-the-shelf
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energy measurement technology rather than expensive professional
equipment or DIY solutions. While I performed most energy mea-
surements in this thesis with the MIMOSA platform that is capable
of GPIO-based synchronization, I have answered RQ1 by showing
that a synchronization algorithm that exclusively relies on in-band
signals can be a viable alternative. With external calibration and drift
compensation, it achieves a maximum measurement error of 53 µA
and 0.95 ms on the $20 apiece commercial off-the-shelf MSP430FR5994

LaunchPad’s EnergyTrace circuit.
At this point, we are equipped to reproduce the variability results

presented in Sections 2.7 and 3.6, and start thinking about perfor-
mance prediction models. However, we have neither considered which
configurable features are relevant for these models, nor how variability
model and performance prediction model should interact. The next
chapter addresses these questions.
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VA R I A B I L I T Y M O D E L S

So far, we have examined two kinds of variability models: feature
models that capture the hierarchy and dependencies of software prod-
uct line configuration options (Section 2.1), and parameterized finite
automata that describe states (operating modes), transitions (function
calls) and run-time configuration of embedded peripherals (Section
3.3). We have also seen examples of how engineers can extend them
with performance models: some modeling languages support feature-
and variant-wise performance annotations and aggregation functions
(Section 2.2), and parameterized finite automata can be extended to
parameterized priced timed automata (Section 3.3).

However, those are just examples. In the SPLE community, there is
no consensus on a recommended variability modeling language and
performance modeling approach, and the state of the art is far from
homogeneous [Sun+

21b]. Only a sub-set of variability modeling lan-
guages supports integrated performance models by means of feature-
and variant-wise annotations, while others have to be combined with
separate performance prediction models if performance modeling is
desired. This reflects that product line engineering research focuses
on handling variability, and performance prediction models evolved
as optional add-ons.

With embedded peripherals, it is the other way round: research
focuses on energy models, with variability handling being more of a
necessary burden. While state machine-based energy models know
about variability in the sense of different hardware operating modes,
many of them do not consider run-time configuration variables. Those
that do, such as parameterized finite automata, treat them as a loose
collection of features rather than using a hierarchical feature model.

In addition to that, SPLE and CPS/IoT researchers do not agree on
the kind of features that a variability model should consider. SPLE
literature tends to focus on boolean feature toggles, and often assumes
that performance prediction models need not work with numeric fea-
tures [Per+

21]. Energy modeling methods for hardware components,
on the other hand, typically focus on state machines and numeric
configuration variables. They often neglect boolean feature toggles
altogether or express them as part of the state machine by having one
set of states where the feature is enabled and another set where it is
disabled.

It is not clear whether this means that numeric or boolean features
are irrelevant in the respective domain, or whether they were simply
not deemed as important and therefore not considered in the past.

99
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Also, it is not clear how hybrid product lines that contain variable
software and hardware components, such as the resKIL embedded AI
product line, fit into these disparate assumptions.

The goal of this chapter is to find the common denominator of the
two communities and to determine the constraints, requirements, and
assumptions that regression model trees work with. It has far-reaching
consequences for the remainder of this thesis, as one of my goals is to
introduce regression model trees as a common performance modeling
method for software product lines and embedded peripherals. The
results of this chapter decide how regression model trees and existing
variability models should interact, and how embedded peripherals
with their loose collection of features play into this interaction.

We start with the relation between variability modeling languages
and performance models in software product lines. Here, engineers
can choose between integrated performance models that are part of
a variability model, and separate performance models that interface
with product configurations by means of feature vectors. Both ap-
proaches are present in the literature, and there is no community
consensus for a recommended variability modeling language or a
recommended performance modeling method [Sun+

21b]. Section 6.1
presents a qualitative and quantitative analysis of integrated and sepa-
rate performance prediction models, and thus addresses RQ2: should
performance models be integrated into variability models, or should
they be separate entities?

For embedded peripherals, the question comes from a different
angle. Even though these expose variability in the form of run-time
configuration options, they are not developed according to product
line engineering principles and do not come with a formal variability
model. If performance models should be integrated into variability
models, engineers must define a variability model before they can
extend it with performance attributes. If not, they may consider vari-
ability in hardware components as a loose collection of features (i.e., a
feature vector) without an underlying hierarchy. Following up on the
answer to RQ2, Section 6.2 describes how the run-time variability of
hardware components relates to product line engineering principles.

Finally, we will analyze the importance of numeric features in
software product lines and boolean features in hardware components.
We have already seen in Sections 2.7 and 3.6 that both are present
in real-world product lines and real-world embedded peripherals.
Sections 6.3 and 6.4 examine whether these types of features have an
effect on the modeled performance attributes, and – if so – whether the
modeling methods presented in the previous chapters are equipped
to handle them.
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Figure 6.1: Alternative approaches for adding performance models to a fea-
ture model: integrated model (left) vs. separate model (right).

6.1 performance model integration

Related publication: Birte Friesel et al. “On the Relation of Vari-
ability Modeling Languages and Non-Functional Properties”.
In: Proceedings of the 26th International Systems and Software Prod-
uct Line Conference - Volume B. SPLC ’22. Graz, Austria: Associa-
tion for Computing Machinery, Sept. 2022, pp. 140–144. isbn:
978-1-4503-9206-8. doi: 10.1145/3503229.3547055 [Fri+

22b]

Integrated performance models rely on built-in features of variability
models. As we have seen in Section 2.2, these offer feature- and variant-
wise annotations as well as aggregate functions. Aggregate functions
may simply state how the attributes of sub-features affect parent
features, or include cross-tree references that capture the interaction
of feature sets. As textual variability modeling languages follow a
well-defined syntax, they can be created and evaluated manually
or automatically, e.g. via machine learning and performance-aware
configuration tools.

Separate performance models, on the other hand, are not part of
the variability model. Instead, they translate product line configura-
tions (feature vectors) x⃗ into predicted non-functional properties y.
Here, the feature vector serves as interface between variability model
and performance model, and the performance model f (x⃗) itself is a
black box of arbitrary complexity. Separate models are well-suited
for automatic generation and evaluation; some can be generated and
evaluated manually as well.

Fig. 6.1 illustrates these conceptual differences. We have already
seen examples for both. The feature- and variant-wise annotations in
Section 2.2 can be embedded into a textual variability model such as
Clafer or SPL Conqueror [Bąk+

16; Sie+
12b]; the decision tree variants

presented in Section 2.5.2 are external models.
At the time of writing this thesis, I am not aware of a clear trend

towards either variant in the product line engineering community. The
first languages with explicit support for built-in performance models

https://doi.org/10.1145/3503229.3547055
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were published in 2010; since then, some languages have followed up
on this idea and improved it, while others do not consider performance
models as part of the language at all. A survey undertaken at the
Software Product Line Conference (SPLC) 2021 also showed that there
is no clear tendency towards either variant [Sun+

21b]. Looking at
performance modeling research does not answer this either, as many
research works in this area exclusively focus on the performance
model. Often, it is not clear which variability modeling language (if
any) they are using to begin with [Per+

21].
So, when designing a novel machine learning method for perfor-

mance model generation, it is important to know how the generated
model will interact with variability models: should it integrate with
an existing variability modeling language, or should it be separate?
To help answer this, I set out to do a qualitative and quantitative
comparison of these two approaches. The qualitative analysis was
supported by my colleague Matheus Ferraz.

6.1.1 Qualitative Analysis

We will examine six aspects of performance prediction models, starting
with the annotation process (i.e., data acquisition). Next, we will look
at complexity and expressiveness of the generated model, as well as
flexibility and maintenance when it comes to updating and extending it.
Finally, we will also consider whether the two approaches follow the
principle of separation of concerns.

Annotation Process

First and foremost, the choice between integrated and separate models
affects how users annotate model components with performance at-
tributes. In principle, in both model variants, users can do so manually
or use a machine learning algorithm to automate the process. We have
seen examples for all four cases: manual annotation of an integrated
model in Clafer (Listing 2.2), automatic generation of feature- and
variant-wise annotations using least-squares regression (Section 2.5.1),
manual specification of a regression forest (Fig. 2.5), and automatic
generation of regression trees (Fig. 2.3).

In practice, the feasibility of manual annotation depends on model
size and the availability of expert knowledge. If a domain expert
already knows how features affect system performance, integrated
models allow them to create variability model and performance model
at the same time, thus saving time and ensuring consistency. For
instance, the financial cost of features is typically known in advance
rather than a result of benchmarks, and therefore a good candidate
for manual annotation. However, especially when faced with a large
amount of features and feature interactions, such expert knowledge is
no longer reliable [Ach+

22].



6.1 performance model integration 103

Hence, most research works rely on automatic model generation
using benchmark data and machine learning [Per+

21]. This is less
tedious and error-prone, but only a sub-set of machine learning algo-
rithms can be used to obtain integrated performance models. Others,
such as regression trees, work by building their own model structure
and must be kept separate.

So, while integrated models can provide benefits if the feature model
is small and expert knowledge for manual annotation is available,
separate models with benchmark-based model generation offer a
more diverse choice of modeling methods, increasing the likelihood
of finding a suitable modeling method for a specific domain. For
the annotation process, this means that separate models should be
preferred, but there are exceptions to the rule. At least when surveying
research that focuses on performance models, separate models are
also more widely used in practice [Per+

21].

Model Complexity

Once annotations are present, model complexity indicates how well a
human can exploit them for performance-aware system configuration.
For this aspect, I assume that the user is not relying on a configuration
frontend that predicts and annotates the effect of feature toggles,
but instead obtaining knowledge about the performance influence of
features by looking at the model.

At first glance, integrated models are ideal for this use case. They
annotate each feature with performance attributes, use aggregate func-
tions to describe how sub-features affect the performance of a parent
feature, and can employ variant-wise annotations to indicate how a
feature interacts with features in other parts of the variability model
hierarchy. Thus, when a user is interested in the performance influ-
ence of an individual feature, they can find all relevant information as
annotations related to the feature in question, without having to keep
track of the complete feature model.

Separate models, on the other hand, can become quite complex
and hard to grasp. A keen reader may have already observed this
in Section 2.5.2, where I used hand-crafted LMT and XGB models
as examples. The models generated by the corresponding machine
learning algorithms were accurate, but far less interpretable.

However, considering the ever-increasing amount of feature inter-
action in today’s product lines, there is a flip side to this [Tër+

22].
Expressing feature interaction via variant-wise attributes can quickly
clutter the model, making it hard to understand: users have to con-
sider the configuration of dozens of interacting features in order to
determine whether an individual feature should be enabled or not.
Separate models, on the other hand, benefit from a growing research
interest in interpretable machine learning [BP21]. My own regression
model tree approach also aims to fit under the interpretable machine
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learning umbrella. Still, on average, integrated performance models
are less complex.

Model Expressiveness

A closely related subject is expressiveness. More complex models tend
to be more expressive, and thus have a better-equipped toolbox for
learning and predicting complex product behaviour. They must not
become too complex, though, lest they suffer from degraded accuracy
due to overfitting [DS98; Ray+

19].
The expressiveness of integrated performance models is dictated by

the textual variability modeling language they are part of, and typically
limited to feature-wise annotations, feature interaction (variant-wise
annotations), and aggregate functions (see Section 2.2). Separate mod-
els, on the other hand, can be as simple as feature-wise annotations, or
as complex as a neural network or even a high-level hardware simula-
tor. Hence, as long as the learning process takes care to minimize the
risk of overfitting, separate models are clearly superior in this regard.

Flexibility

The same goes for flexibility. If it turns out that the current integrated
performance modeling method is inadequate for the task at hand, engi-
neers have no choice but to switch to a variability modeling language
with more powerful performance modeling features. This comes at
the cost of having to translate the entire variability model into a new
modeling language, which can be a significant source of headache due
to subtle differences between different languages [Fei+21]. With sepa-
rate models, if the current approach is no longer adequate, engineers
can switch to a new performance modeling method without having to
change the variability model. In most cases, they do not even have to
perform new benchmarks, but can use already-available benchmark
data to train a new model.

Maintenance

Real-world product lines tend to evolve over time, requiring mainte-
nance of variability and performance models. Whenever a product
line’s variability model changes, the previously used performance
model may no longer be accurate. For instance, it might not be aware
of newly added features, or might refer to feature combinations that
are no longer valid. Hence, both integrated and separate performance
models must be updated.

When using integrated models with manual annotation, domain
engineers can update variability model and performance models in
one go, thus ensuring consistency. With separate models, manual
updates are possible as well, but engineers must take extra care when
mapping changes in the variability model to the performance model’s
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structure and annotations. When relying on machine learning for
model generation, or when faced with a separate model that cannot
be updated manually, practitioners have no choice but to rebuild the
entire performance model. This is also the case when a product line’s
implementation evolves, e.g. by employing more efficient algorithms
or performing additional (mandatory) safety checks: the variability
model remains the same, but performance attributes of individual
features may be different.

In general, in these cases, engineers must run a new benchmark
campaign based on the new variability model and corresponding
implementation. Especially for large configuration spaces, this can
be a time-consuming task. However, some types of separate models
can reduce the amount of benchmark configurations by employing
transfer learning to efficiently adapt to implementation and variability
model changes [Jam+

18]. I am not aware of integrated performance
prediction models that support transfer learning, hence I consider
separate models to be slightly better suited to this task.

Separation of Concerns

As mentioned above, even if the variability model remains the same,
the performance model may need to be updated. The variability model
focuses on product attributes rather than subtle implementation de-
tails, and hence does not know or care about code efficiency improve-
ments or compiler updates. However, these can impact performance
attributes, and in the worst case make the entire performance model
worthless, requiring new annotations or benchmarks for everything.

In fact, especially when following SPLE methods, an implementation
(and, thus, its effect on performance) is not even available yet when the
feature model is designed. With this in mind, integrated performance
models clearly violate the principle of separation of concerns: a feature
model does not know or care about implementation details, and hence
it should not contain performance annotations that depend on them.
Separate models, on the other hand, follow this principle.

At this point, most qualitative attributes are in favour of separate
models, though their severity depends on the application in question.
Table 6.1 gives a summary of the six aspects we examined.

6.1.2 Quantitative Analysis

For the quantitative analysis, we will compare model accuracy and
complexity of integrated Feature-Wise Annotation (FW) models to
separate Classification and Regression Trees (CART). Feature-wise
annotations are one of the most simple, easy to understand and easy
to annotate integrated performance modeling methods. They can be
generated manually or automatically, e.g. by means of least-squares
regression [Ros+

11; Sie+
11]. Classification and regression trees are also
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integrated separate

Annotation Process (✓)

Model Complexity ✓

Expressiveness ✓

Flexibility ✓

Maintenance (✓)

Separation of Concerns ✓

Table 6.1: Qualitative comparison of integrated and separate performance
models. A check mark ✓ indicates the better approach in the
respective category. Parentheses (✓) indicate that an approach is
only slightly better.

relatively simple, and often used as an external modeling method in
the literature [Guo+

18]. See Sections 2.2 and 2.5 for details.
This analysis relies on the product lines and benchmark results

introduced in Section 2.7. To ensure a fair comparison, I used identi-
cal feature vectors for FW and CART model generation by mapping
disabled boolean features and undefined numeric features to 0 and
enabled boolean features to 1. This way, least-squares regression and
regression tree generation algorithms can digest all system configura-
tions as feature vectors x⃗ ∈Nn.

Feature-wise annotation associates each feature with a weight that
is relevant if and only if the feature is enabled (for boolean features)
or that acts as a scaling factor (for numeric features). When employing
machine learning to generate feature-wise annotation models, it is
sufficient to fit the formula β0 + ∑n

i=1 βixi on training data using least-
squares regression. Each regression weight βi (with i > 0) corresponds
to a constant feature-wise annotation for feature xi. The special weight
β0 expresses the base cost or performance of the product line without
optional features. For CART, I used the learning algorithm presented
in Section 2.5.2. I left its hyper-parameters at their default values
(Tm = Tσ = 0, Td = ∞), hence it favours accuracy over compactness.

Fig. 6.2 provides accuracy and complexity data for both modeling
methods. The top half shows the prediction error of integrated (FW)
and separate (CART) models after 10-fold cross validation, and the
prediction error of a LUT model (without cross validation) that serves
as lower error bound. Due to a wide range in relative error (up to
800 % MAPE for resKIL latency), it reports accuracy using SMAPE,
which is easier to graph thanks to its limited range (0 to 200 %). The
bottom half shows model complexity (see Section 2.6.2) in logarithmic
scale. In both cases, lower values are better.

The results confirm the qualitative analysis in the previous section.
Thanks to its expressiveness, the separate CART model is more accu-
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Figure 6.2: Symmetric Mean Absolute Percentage Error (SMAPE) and com-
plexity score (log scale) of integrated Feature-Wise Annotation
(FW) and separate Classification and Regression Tree (CART)
models after cross validation. Solid lines indicate lower error
bound (LUT model, no cross validation).

rate than the integrated feature-wise annotation model in all cases; it
is often close to the lower error bound. The feature-wise model often
has a prediction error of more than 50 %, and Kratos ROM and RAM
usage are the only cases where it is less than 2 %. This indicates that
Kratos has less feature interaction than the other product lines, thus
allowing a simple feature-wise annotation model to accurately predict
its performance attributes.

However, as anticipated, the CART model is also one to two orders
of magnitude more complex. At the same time, as the cross-validated
results show, it often achieves a prediction error of less than 10 %. It is
therefore likely that this complexity is not caused by overfitting, but
due to complex feature interactions in the product lines. So, while the
integrated model is easier to understand for humans, this comes at the
cost of reduced accuracy. The separate CART model is clearly better
as soon as automation or tooling for performance model evaluation
are involved.

Additionally, even if regression trees are more complex, their struc-
ture gives insights into product behaviour. An important side-effect
of the greedy decision tree learning algorithm is that influential (and,
thus, important) features are located close to the root, whereas less
important features end up close to leaves or are left out entirely, de-
pending on training hyper-parameters. For instance, Fig. 6.3 shows
the top of the decision tree for predicting busybox RAM usage. Un-
surprisingly, it indicates that cross-cutting concerns related to security
(SANITIZE), debugging (DEBUG), and dynamic linking (STATIC) have a
notable effect on memory usage.
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SANITIZE?

DEBUG?

BC_INT?
...

BOOTCHARTD?
...

n ySTATIC?

BB_CRYPT?
...

BUF_BSS?
...

n y

n y

Figure 6.3: Excerpt of a Classification and Regression Tree (CART) model for
busybox RAM usage.

As a follow-up conclusion, we see that even if no formal variability
model is available, engineers can use performance models to build a
feature hierarchy and gain insights about the importance of individual
features. This is helpful when working with performance models
for components that are not developed according to product line
engineering principles and thus do not have a formal variability model,
such as hardware components. Next, we will examine whether we can
indeed leave out the variability model for those, and solely rely on
performance prediction models for performance analysis. I will also
explain how this thesis relates hardware components to product lines.

6.2 run-time features in peripherals

Even though embedded peripherals and device drivers are typically
not developed according to product line engineering principles and
do not use feature models for variability modeling, I consider them to
be similar to product lines.

First of all, many modern peripheral components have a wide range
of run-time configuration options such as radio bit rate and transmit
power settings, sensor resolution and measurement mode, or display
update method [Che+

17]. So they, too, expose variability.
Additionally, in my experience, a single application rarely uses all

valid run-time configurations of a specific device. Instead, system
designers use domain knowledge and energy measurements to deter-
mine suitable hardware choices and configurations, and then build
their product to use only those. For example, they may configure a
wireless radio chip to always perform low-power transmissions with
a high bit rate, as they have decided that packet loss is not critical in
their application. Or, when selecting hardware components, they may
choose an E-Paper display (zero-power standby, costly updates) for
a rarely updated electronic price tag, and an LC display (low-power
standby, low-power updates) for a frequently updated info terminal.
So, each peripheral, combined with the configuration options (fea-
tures) exposed by its driver, behaves like a product line that system
designers can turn into specific products to suit their needs.
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nRF24

Variable Length (vl) Payload Length (write:len)

Data Rate (dr)

Transmit Power (tp)

Automatic Retransmit (ar)
Retransmit Delay (rd)

Retransmit Limit (rl)

Figure 6.4: Feature model for an nRF24L01+ radio transceiver. Payload
Length (dashed) is an argument of the write function that does
not affect other states/functions. Other function arguments left
out for brevity.

For instance, Fig. 6.4 shows a feature model for the nRF24L01+
radio transceiver that I created manually from driver source code
and hardware documentation. The parenthesized identifiers in each
feature refer to the run-time parameters in the corresponding PFA
model in Fig. 3.9.

However, from a performance attribute perspective, there is a no-
table difference between embedded peripherals and software product
lines. In contrast to properties such as hardware cost or ROM usage,
energy and timing attributes are runtime-dependent and thus must
be viewed in the context of a workload. For example, whether a radio
chip is transmitting one or ten packages per second has significant
impact on its energy usage and must not be ignored.

This has two consequences when applying performance modeling
methods from the SPLE domain. First, data acquisition relies on a
benchmark application that dictates the frequency of radio transmis-
sions, sensor readings, display updates, or similar. Second, a per-
formance model generated this way is only valid for this specific
benchmark workload. It can predict how configuration changes affect
the benchmark application, but cannot determine the effect of different
workloads (e.g. less frequent radio transmission or deep sleep instead
of idle). Engineers have to re-do the entire benchmark campaign to
assess the effect of workload changes, which quickly becomes tedious
and cannot easily answer “what if?” questions.

Energy models address this by breaking the model down into com-
ponents such as hardware states and driver functions, and predicting
energy attributes for each of those separately. Thus, the energy model
becomes independent of application and workload. Users can now
calculate the energy requirements of any application or workload that
they can express in a model-compatible manner, e.g. as a series of
function calls or as the amount of time spent in each hardware state
(see Section 3.3).

Going back to the product line perspective, this means that each
hardware component has a single feature model that is associated
with sets of performance models: one for each hardware or driver
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state (PFA state) and one for each driver function (PFA transition).
All performance models refer to the same set of global device driver
configuration variables, and driver functions may additionally be
affected by function arguments. Hence, all PFA states and transitions
share the same feature model, which may include function-specific
features that relate to individual function arguments.

The performance influence and relevance of individual features
varies between different states and functions, and thus between dif-
ferent performance models. For instance, a radio transceiver’s sleep
mode is typically not affected by transmission-related settings, but
its transmit state is. As vendor documentation and device drivers
generally lack a formal model that describes these interactions, it is
up to the engineer or machine learning algorithm to determine the
relevant features and arguments for each state and function.

In fact, available documentation typically does not provide a formal
variability model and focuses on configuration functions or registers
instead. So, in most cases, engineers only have feature vectors (i.e.,
an unstructured bag of features) to work with. If they need a feature
model, they have to come up with it by themselves.

In general, they do not need one, though. As we have concluded
in Section 6.1, separate performance models are often more accurate
than models that are integrated into a variability model, and some
are able to provide human-readable information about the hierarchy
and relevance of features. Hence, a loose collection of features is suffi-
cient for performance prediction, and we can work with embedded
peripherals without manual specification of a feature model.

For the remainder of this thesis, this means that we do not have
to limit ourselves to proper product lines with formal variability
models. All of the following findings and algorithms apply to any
product line or application whose features or configuration options
can be expressed as feature vectors x⃗ ∈ {R∪ {⊥}}n. Notably, this
includes software product lines, embedded peripherals, and hybrid
applications such as the resKIL agricultural AI product line.

Now, the next question is which kind of features a performance
model should consider: are numeric features relevant for performance
attributes of software product lines, and are boolean features relevant
for energy models of embedded peripherals?

6.3 numeric features in software product lines

Related publication: Birte Friesel and Olaf Spinczyk. “Perfor-
mance is not Boolean: Supporting Scalar Configuration Vari-
ables in NFP Models”. In: Tagungsband des FG-BS Frühjahrstref-
fens 2022. Hamburg, Germany: Gesellschaft für Informatik e.V.,
Mar. 2022. doi: 10.18420/fgbs2022f-03 [FS22b]

https://doi.org/10.18420/fgbs2022f-03
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When presenting the x264 use case in Section 2.7, and at several
later points in this document, I mentioned that most SPL research only
considers boolean features when building performance prediction
models. This is not limited to x264, but a common theme in the
literature [Per+

21].
Of course, the reason for this might be that engineers deliberately

leave out numeric features because they know that those features
have no influence on performance attributes of software product
lines, and hence do not need to be considered for configuration space
exploration and model generation. However, a desire to avoid the
complexity of handling numeric features in sampling and machine
learning algorithms is also a plausible explanation. In my opinion,
two arguments suggest that the latter is the case.

First, the effect of numeric features on product performance may
be non-linear, and thus require more than just two samples from
its configuration range for learning. So, while each boolean feature
doubles the configuration space, numeric features increase it by a
factor of three or more, depending on sampling strategy.

Second, the common regression tree / CART performance mod-
eling approach expresses piecewise constant functions. This makes
it incapable of extrapolating beyond the data range present during
model learning, and limits its accuracy when interpolating between
data points. While more sophisticated algorithms like linear model
trees exist, they are rarely used in practice.

This section examines two questions related to these arguments: do
numeric features affect performance attributes of software product
lines, and are CART able to predict their influence? To answer these,
we use two sets of observations that build upon benchmark data from
Section 2.7: one that takes numeric features into account, and one that
does not.

The set with numeric features uses all benchmark data (observa-
tions and feature vectors) as-is. The set without numeric features uses
the same observations, but its feature vectors leave out numeric (or,
more precisely, non-boolean) features. For example, if the set with nu-
meric features is S = {((y, n, 10), 1.1), ((y, n, 20), 1.2)}, the set without
numeric features is S′ = {((y, n), 1.1), ((y, n), 1.2)}.

This way, even though the latter set of benchmark data pretends that
there are no numeric features, the underlying observations belong to
configurations with variable numeric features. This reflects real-world
conditions: even if a performance model does not know or care about
a product line’s numeric features, users may change those at any time
and will still expect reasonable prediction accuracy.

To answer the first question – whether numeric features are rel-
evant for performance prediction to begin with – we can examine
the prediction error of LUT models for both sets of benchmark data.
These models capture the underlying measurement uncertainty when
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Figure 6.5: Symmetric Mean Absolute Percentage Error (SMAPE) of LUT
models with boolean features only (left bars) and with all features
(right bars).

all parameters are kept constant. Hence, if numeric features have no
influence at all, the prediction error of a LUT model that ignores
numeric features must be identical to the prediction error of a model
that knows about numeric features. If numeric features are relevant,
on the other hand, the error of a LUT model that ignores them will be
significantly higher.

Once that is settled, we will examine the prediction error of proper
machine learning models (DECART for boolean-only features and
CART for all features) after cross validation. This way, we can find out
whether these machine learning models can capture the behaviour we
observed in the LUT model. If it turns out that respecting numeric
features decreases LUT error, this should also be the case for a CART
model – otherwise, it may be inappropriate for the task at hand.

6.3.1 Relevance

As Busybox, Kratos, and Multipass measurements do not exhibit run-
time variability, an ideal model has a prediction error of zero. For
Busybox and Kratos, with 25 and 137 numeric features, respectively,
the LUT model achieves a near-zero error both with and without
numeric features (see Fig. 6.5). So, for these product lines, numeric
features are indeed not relevant for performance prediction and may
safely be ignored in favour of simple, boolean-only sampling and
modeling algorithms.

Multipass, on the other hand, has an error of 4 % when ignoring
its eight numeric features. When including them, the error drops to
zero. Here, numeric features clearly influence system performance
and must not be ignored.

The resKIL embedded AI product line only has a single numeric
feature (batch size). It is only relevant at run-time, and hence should
not influence neural network size. The results confirm this: resKIL size
has a LUT error of zero in both cases. The other resKIL attributes as
well as all x264 attributes show significant deviations when ignoring
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Figure 6.6: Symmetric Mean Absolute Percentage Error (SMAPE) and com-
plexity score (log scale) of models with boolean features only
(DECART, left bars) and with all features (CART, right bars) af-
ter cross validation. Solid lines indicate lower error bound (LUT
model error without cross validation, see Fig. 6.5).

numeric features. In all cases, boolean-only SMAPE ranges from 15 to
80 %, whereas including numeric features decreases it to below 10 %.

These findings allow for two conclusions. First, in general, numeric
features affect product behaviour and respecting them during sam-
pling and data acquisition can significantly improve the quality of
model learning datasets. Second, there is no relation between the
number of numeric features in a product line and their relevance for
performance prediction. There are both real-world product lines whose
hundreds of numeric features have nearly no effect on performance
attributes (e.g. Kratos), and real-world product lines where less than a
dozen numeric features are highly influential (e.g. x264, resKIL). Now,
let us examine whether CART models are able to transform these
improved datasets into better performance prediction models.

6.3.2 Prediction

The comparison between DECART (boolean features only, left / blue
bars) and CART (boolean and numeric features, right / red bars)
in Fig. 6.6 shows that regression trees are capable of reaping this
potential. In all cases where numeric features are relevant, CART are
more accurate than DECART, often by a factor of two or more. In
cases without influential numeric features, CART and DECART error
is nearly identical, with no more than 0.2 % difference in prediction
error. At the same time, the presence of irrelevant numeric features
does not make the models more complex: DECART and CART models
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for busybox and Kratos have nearly the same complexity score; only
resKIL and x264 show a notably higher CART complexity due to
interactions between boolean and numeric features.

In conclusion, we see that numeric features can have significant in-
fluence on performance attributes of software product lines. Including
them in the sampling strategy and during model generation can sig-
nificantly reduce the prediction error of performance models without
degrading model complexity. In general, the cost of supporting nu-
meric features is low: existing sampling strategies such as systematic
configuration space exploration (resKIL, x264) and random sampling
(Multipass) can be adapted easily, and the difference in algorithmic
complexity between DECART and CART construction is small.

6.4 boolean features in peripherals

As we have seen in Section 3.6, some embedded peripherals have
boolean run-time feature toggles in addition to numeric parame-
ters. Examples include air quality measurements and overall oper-
ating mode (BME680), and whether automatic retransmit and variable
length payloads are enabled (nRF24, see also Fig. 6.4).

While some energy models in the literature already use boolean
variables, these typically refer to hardware states rather than express-
ing run-time configuration of product line-like features. For instance,
given a variable xGPS that indicates whether a smartphone’s GPS chip
is operating (xGPS = 1) or in sleep mode (xGPs = 0), an energy model
can use the regression function βGPS · xGPS for GPS power consump-
tion [Zha+

10]. When using PPTA energy models, xGPs should be part
of the state machine structure and not part of the feature vector.

I am not aware of an energy modeling approach that combines
state machine models with boolean feature toggles. While PFA and
PPTA support them in principle, so far the corresponding learning
algorithms have been limited to numeric features [BFS18]. Apart from
that, I am only aware of models that work with boolean and numeric
features without state machines [Zha+

10], and models that work with
state machines but do not express run-time configuration as feature
vectors [Che+

17]. Neither of these fit into my product line approach.
Of course, one might argue that state machine models that only

support numeric features are already sufficient. After all, any configu-
ration variable can be expressed as part of a state machine structure by
duplicating PFA or PPTA states and transitions, and some approaches
in the literature even handle numeric variables this way [Che+

17].
Fig. 6.7 shows this elimination of boolean feature vector components
for the nRF24 radio transceiver. The model is compatible with existing
PPTA benchmark and model generation methods, and can be extended
to an energy model without consideration for boolean variables.
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Figure 6.7: PFA model for an nRF24 radio transceiver, with the boolean ar and
vl variables expressed as part of the state machine model rather
than as parameters. Parameter assignments and some functions
left out or abbreviated for readability.

However, this approach is inadequate. First, Fig. 6.7 already hints
towards a complexity issue: each boolean feature that is expressed
this way doubles the amount of states and transitions, and with just
two boolean features and two hardware states the expanded model
is already harder to grasp than its counterpart in Fig. 3.9. Second,
this way of handling boolean features violates the relation between
peripherals and product lines outlined in Section 6.2: ar and vl must
be part of the feature vector.

With this in mind, let us look into machine learning methods for
PFA-based energy models that support boolean configuration vari-
ables. Just like in the previous section, the analysis comes in two
parts. First, we will examine whether boolean variables affect energy
attributes of embedded peripherals, i.e., whether it makes sense to
include them in energy models. Second, if it turns out that they do
have an influence on energy attributes, we will examine whether ma-
chine learning methods are equipped to handle boolean variables in
the context of energy models.

Again, the analysis uses two sets of energy measurements. The
first one uses the observations from Section 3.6 as-is, and the second
one leaves out boolean variables in the feature vector. For example, if
the set with boolean features is S = {((y, 5, 7), 1.1), ((n, 5, 7), 2.2)}, the
numeric-only set is S′ = {((5, 7), 1.1), ((5, 7), 2.2)}. So, S′ pretends that
boolean features are irrelevant for the energy model, even though they
exist and are changed at runtime. As the CC1200 variability model
does not contain any boolean features, the evaluation set is limited to
BME680 and nRF24 states and functions that exhibit variability in the
observed energy attributes.
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Figure 6.8: Symmetric Mean Absolute Percentage Error (SMAPE) and com-
plexity score (log scale) of CART energy models with numeric
features only (left bars) and with all features (right bars) after
cross validation. Solid lines indicate lower error bound (LUT
model error without cross validation).

6.4.1 Relevance

The solid lines in Fig. 6.8 show the LUT error of observations that
only consider numeric features (left) and observations that consider all
features (right). We see that boolean features indeed have a significant
influence on hardware behaviour: in five of seven cases, ignoring them
increases LUT error from near-zero (boolean and numeric) to 20 to
100 % (numeric only), indicating significant variability in measure-
ments with identical numeric feature configurations.

In one case (BME680 setSensorSettings duration, abbreviated as
setSS T), both observation sets have a high error, indicating configu-
ration-independent variance in hardware behaviour. In another case
(nRF24 RX power), numeric features are sufficient. So, in most cases,
boolean features have significant influence on hardware behaviour
and should be considered for data acquisition and model learning.

6.4.2 Prediction

To be in line with the SPL analysis in Section 6.3.2, we would now have
to compare least squares regression variants with and without boolean
parameters. However, the ULS regression method presented in Section
3.2.1 does not support boolean parameters: a boolean variable has just
two distinct values, whereas ULS requires at least three to determine a
function type. Linear regression, on the other hand, supports boolean
variables but is incapable of expressing non-linear relations between
parameters and energy attributes.
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While I will present a method for combining ULS and boolean
features in Section 7.2, we will resort to regression trees for now. We
have already seen that they support boolean and numeric features, and
therefore they are sufficient for finding out whether respecting boolean
parameters in embedded peripherals can improve the accuracy of
machine learning models.

The bars in Fig. 6.8 show prediction error and model complexity of
CART models without and with boolean features. They confirm that
respecting boolean features significantly improves model accuracy.
The prediction error of CART models that respect all features is close
to LUT error, whereas the prediction error of numeric-only CART
models ranges from 20 to more than 100 %.

However, we also see that respecting boolean features increases
model complexity by a factor of two to five in all cases, regardless
of whether they influence hardware behaviour (and, thus, model
accuracy) or not. This is in contrast to numeric features in software
product lines (Fig. 6.6), where only influential numeric features led to a
notable complexity increase. So, while respecting boolean parameters
is mandatory for achieving reasonable model accuracy, they negatively
affect the goal of obtaining understandable performance models. I will
present a method for dealing with this in Section 7.4.

In summary, we have seen that boolean parameters are an important
aspect of embedded device configuration that should not be ignored
during data acquisition and energy model generation. While existing
sampling strategies can be adapted easily, only a subset of conventional
energy modeling methods supports boolean features.

We have also seen that regression trees may be a useful addition to
existing energy modeling methods. They can learn to predict energy
attributes that are influenced by boolean and numeric configuration
variables with a low cross validation error, but suffer from high com-
plexity, especially when boolean variables are present.

6.5 chapter summary

We have looked into the relation between variability models and per-
formance models in software product lines and embedded peripherals,
and examined whether boolean and numeric features are relevant for
performance prediction in both domains.

First off, we have seen that a loose coupling between variability
model and performance model is sufficient and often beneficial. This
applies to software product lines, where Section 6.1 showed that
separate performance models are better than integrated ones in several
regards, and to embedded peripherals, where Section 6.2 showed
that we can treat variability as an unstructured bag of features (i.e.,
a feature vector). With this in mind, it is sufficient to use feature
vectors as the sole interface for machine learning and performance
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modeling methods. Engineers need not specify a variability model if
the software project or hardware component they are working with
does not provide one.

When it comes to feature selection for performance models, we
have seen that boolean and numeric features are relevant in both
domains. Overall, this shows that performance prediction for software
product lines and energy modeling for embedded peripherals have
more similarities than a literature review might suggest. Both work
well with a loose coupling between variability model and performance
model. In both cases, even though the literature focuses on one type
of feature (boolean for SPLs, numeric for peripherals), boolean and
numeric features affect performance attributes.

Finally, in both cases, engineers have to consider a trade-off between
model accuracy and model complexity. For software product lines,
the trade-off lies within the choice between feature- and variant-wise
annotations and separate models such as regression trees, examined in
Section 6.1. For energy models, it is the choice between user-provided
regression functions, which are understandable by construction, and
models such as regression trees.

This directly leads to the goal of the next chapter: designing a ma-
chine learning algorithm that manages to balance model complexity
and prediction error both in the SPLE and CPS/IoT domains. Con-
sidering the similarities we have seen so far, and the way different
existing approaches reduce complexity or prediction error, such an
algorithm may well be within reach.



7
R E G R E S S I O N M O D E L T R E E S

We now come to another main contribution of this thesis: Regression
Model Trees (RMT) provide a novel data structure and machine learn-
ing method specifically tailored towards interpretable and accurate
performance models for real-world product lines. With their help, this
chapter will answer RQ3: can a common machine learning algorithm
for SPLE and CPS/IoT performance models provide lower prediction
error and model complexity than conventional approaches, without
requiring manually provided domain information or model structure?

RMT address this by supporting both boolean and numeric features,
and by generating understandable performance models without rely-
ing on an already-present variability model. Feature vectors serve as
the only interface between product line and performance model.

Before diving into the machine learning algorithm and its evaluation,
we will examine its two building blocks. Section 7.1 presents my CART
extension that utilizes non-binary nodes to express the performance
influence of groups of alternative features in a shallow and thus easier
to interpret tree structure. Section 7.2 shows that ULS achieves less
complex models than CART and LMT on real-world product lines
with all-numeric features, and thus motivates why RMT, unlike CART
and their siblings, do not handle numeric features as part of the tree
structure. Afterwards, Sections 7.3 and 7.4 present the RMT data
structure and learning algorithm. This is followed by an evaluation of
model accuracy, complexity and learning time, and an overview over
related approaches.

7.1 non-binary regression trees

Related publication: Birte Friesel and Olaf Spinczyk. “Black-Box
Models for Non-Functional Properties of AI Software Systems”.
In: Proceedings of the 1st International Conference on AI Engineering:
Software Engineering for AI. CAIN ’22. Pittsburgh, PA, USA:
Association for Computing Machinery, May 2022, pp. 170–
180. isbn: 978-1-4503-9275-4. doi: 10.1145/3522664.3528602
[FS22a]

Feature models distinguish between abstract and concrete features (cf.
Section 2.1). Abstract features serve as parents for groups of related
features, e.g. different scheduler implementations or peripheral drivers,
and cannot be enabled or disabled individually. Hence, most feature
extraction methods for performance model generation only consider
concrete features, typically over the domain {0, 1} or R.
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Figure 7.1: Binary (left) and non-binary (right) decision tree for expressing
the effect of alternative hardware platforms when predicting
resKIL performance attributes.

Boolean sub-features of an abstract feature are either mandatory
or optional, and their cardinality (i.e., the number of enabled sub-
features) can be specified as well. Common cardinality constraints
include “at least one” (a logical-or relation between sub-features) and
“exactly one” (an exclusive-or relation). In the latter case, mutually
exclusive sub-features are also referred to as alternative features. For
instance, the architectures supported by the sample operating system
product line introduced in Fig. 2.1 are alternatives: each product is
compiled for a single hardware architecture.

This idiom is so common that many variability modeling languages
provide specific syntax for expressing groups of alternative features.
For instance, in Kconfig, features listed within a choice block are
mutually exclusive: exactly one of them must be enabled if the depen-
dencies of the abstract feature defined by the choice block are satisfied.
As shown in Table 2.3, all software product lines in this thesis use
choice blocks, and the amount of alternative features can make up a
sizeable part of their overall variability.

7.1.1 Data Structure

Utilizing this knowledge when learning a decision tree can prove
beneficial. Consider a set of k mutually exclusive boolean features
{feat1, . . . , featk} below an abstract parent feature feat0. For simplicity,
let us assume that feat0 through featk are the only features in the
product line, that all of them are relevant for performance prediction,
and that exactly one of feat1, . . . , featk is enabled in each configuration.

A binary decision tree, such as one learned by the CART or DECART
algorithms, is by design unaware of feat0 and only works with the k
boolean features x1, . . . , xk ∈ {0, 1}. The resulting tree has k leaves (one
per feature), k− 1 non-leaf nodes, and a depth of k− 2. One feature
does not have a corresponding decision node and is instead implicitly
expressed by a path where all other features are disabled. While this
does not affect prediction accuracy, it hinders interpretability.
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A non-binary decision tree, on the other hand, can use a single
categorical variable x0 ∈ {feat1, . . . , featk} to encode the selected feature.
It consists of a single decision node that queries x0 and has one sub-
tree (in this case: one leaf) for each of its values. Just like the binary
variant, it has k leaves, but only a single non-leaf node. Its depth
is 1 rather than k− 2. Moreover, the mutually exclusive relationship
of feat1 through featk has become part of the decision tree structure,
providing important semantic information when visualizing it. Fig. 7.1
illustrates these two approaches, and the simplicity of the non-binary
variant, for a part of the resKIL product line.

In principle, this is not a novel realization: the notion of non-binary
decision trees that utilize multi-way splits on categorical variables is
almost as old as the concept of decision trees itself [Kep96]. How-
ever, past research has focused on optimizing accuracy rather than
interpretability, e.g. by grouping several features into the same sub-
tree [Kep96]. This approach requires careful hyper-parameter tuning
and is thus not ideal for automated model generation.

For the Non-Binary Classification and Regression Trees (NBCART) used
within this thesis, I decided to favour interpretability over accuracy.
Hence, they neither group several alternative features into the same
sub-tree, nor do they perform pre-processing of groups of alternative
features into boolean pseudo-features. Instead, they treat each group
of alternative features as a single categorical variable, and extend
DECART’s handling of boolean features towards multi-way splits with
one sub-tree for each alternative feature. The resulting data structure
is defined as follows.

Definition 7.1.1 An NBCART is a tree that expresses a piecewise
constant function f : Σn → R. Each non-leaf node holds a query “xi?”
for some index i ∈ {1, . . . , n}, and each leaf node holds an output
value y ∈ R.

Definition 7.1.2 For an NBCART f , decision( f ) = ⟨i,⊥⟩ indicates
that its root node holds the query “xi?”. children( f ) = {z1, . . . , zk}
returns the set of feature values z for which the node f has a child.
child( f , z) = fz refers to the sub-tree fz that holds the model for
xi = z. If the root node is a leaf node annotated with the value y,
decision( f ) = ⊥ and value( f ) = y.

7.1.2 Algorithms

Using this idea in practice requires changes to feature extraction,
regression tree generation, and the regression tree query algorithm.
Feature extraction now ignores all boolean features feat1, . . . , featk that
are mutually exclusive children of a parent feature feat0, and instead
generates a single variable x0 ∈ {⊥, feat1, . . . , featk}. The special value
⊥ indicates that no alternative feature has been selected, either due to
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Algorithm 9 Build an NBCART from observations S.

function BuildNBCART(S)
f ← new NBCART
if stop criterion satisfied then

decision( f )← ⊥
value( f )← µ(S)
return f

for i ∈ {1, . . . , n} do
for z ∈ Vali(S) do

Si,z ← {(x⃗, y) ∈ S|xi = z}
SSRi ← ∑z∈Vali(S) SSR(x⃗ ↦→ µ(Si,z), Si,z)

i← argmin(i, SSRi)

decision( f )← ⟨i,⊥⟩
for z ∈ Vali(S) do

child( f , z)← BuildNBCART(Si,z)

return f

unsatisfied dependencies or because the feature group is optional (i.e.,
feat0 is a concrete feature) and has not been enabled by the user.

Given a set of observations S = {(x⃗1, y1), . . . , (x⃗m, ym)} and the
usual definitions for µ(S) and SSR, I adjust the DECART learning
algorithm (cf. Section 2.5.2 and Algorithm 3) for NBCART as described
in Algorithm 9. The following list outlines the model generation steps
in a less formal manner.

1. If a stop criterion is satisfied: return a leaf node using the mean
of observed data µ(S) as model value.

2. For each feature xi, let z1, . . . , zk be the unique values of xi in S.
Split S into partitions Si,z1 , . . . , Si,zk so that Si,zj only contains en-
tries with xi = zj. Calculate the model error induced by splitting
on xi: SSRi = ∑k

j=1 SSR(x⃗ ↦→ µ(Si,zj), Si,zj).

3. Find the variable xi with the lowest loss SSRi and transform it
into a decision node “xi?”.

4. Repeat recursively with Si,zj for j ∈ {1, . . . , k}, adding one sub-
tree to “xi?” for each set Si,zj .

Note that NBCART provide a superset of DECART capabilities: they
handle boolean features by treating them as categorical features with
just two categories (enabled and disabled).

Similarly, they treat each numeric feature as a categorical variable
with one category for each observed numeric value. As such, NBCART
do not utilize the fact that numeric features have a natural order that
can be used for binary decisions on appropriate thresholds (cf. CART:
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Algorithm 10 Calculate f (x⃗) for an NBCART f .

function QueryNBCART( f , x⃗)
if decision( f ) = ⊥ then

return value( f )

⟨i,⊥⟩ ← decision( f )
if child( f , xi) then

return QueryNBCART(child( f , xi), x⃗)

C ← children( f )
return |C|−1 ·∑z∈C QueryNBCART(child( f , z), x⃗)

“xi ≤ z”). While this degrades interpretability and accuracy when
dealing with numeric features, it is a deliberate simplification on the
way towards RMT. We will rectify this shortcoming later.

When using the non-binary tree for performance prediction, queries
may contain configurations of alternative features that were not present
in the training set and are therefore not part of the tree structure. For
instance, the tree shown in the right part of Fig. 7.1 may be asked to
predict throughput on the “UpBoard” platform, but its training set
only contained benchmark data for RasPi, Jetson, Coral, and i.MX.
When faced with such a situation – a node deciding on a categorical
variable xi that does not have a sub-tree for the requested value – it
queries all available sub-trees and returns the mean of their respective
predictions instead. In the hardware example, this would be the mean
of RasPi, Jetson, Coral and i.MX predictions.

Algorithm 10 gives a formal description of the inference process,
with the last line referring to the aforementioned fall-back for queries
that contain unknown categorical values.

7.1.3 Evaluation

To evaluate whether this approach improves model interpretability
and how much it affects model accuracy, we will compare CART
and NBCART performance on the product lines presented in Sec-
tion 2.7 with respect to three metrics: prediction error, complexity
score, and tree depth. Both models use the corresponding learning
and query algorithms. CART feature extraction leaves out categorical
(choice) features, i.e., only considers the left boolean column and the
numeric column of Table 2.3. NBCART feature extraction only consid-
ers boolean features that are not part of a choice, i.e., the right boolean
column as well as the choice and numeric columns of Table 2.3.

Considering the deliberate lack of proper support for numeric fea-
tures in NBCART, we will examine two kinds of datasets. The Busybox,
Kratos and x264 evaluation targets use all available observations and
thus include variable numeric features that influence their respective
performance attributes. Multipass and resKIL use a sub-set of ob-
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Figure 7.2: Symmetric mean absolute percentage error (SMAPE), complexity
score (log scale), and depth of binary and non-binary regression
trees after cross validation. Models annotated with a star (⋆) refer
to a sub-set of the configuration space without variable numeric
features. Solid lines indicate lower error bound.

servations in which all numeric features are constant, i.e., boolean
and categorical features are the only source of variability outside of
measurement uncertainty. The Multipass sub-set holds 2,222 of 10,000
samples; resKIL uses 1.04 · 106 of 3.82 · 106 samples for latency and
3,796 of 14,884 for the other three attributes.

Fig. 7.2 shows the results. First off, we see that NBCART achieve
their interpretability goal: they are consistently more shallow, with a
depth of 4 to 21 compared to up to 63 for CART. The resKIL product
line benefits most: as all of its boolean features are part of alternative
feature groups, NBCART reduce model depth by a factor of ten.

The complexity score does not show a notable improvement. This is
to be expected: While CART and NBCART come up with a different
decision tree structure, they have little difference when it comes to
leaf nodes. The number of leaf nodes, in turn, makes up more than
half of the total complexity score.

When it comes to prediction accuracy, we see that improved inter-
pretability is not free of charge. The NBCART and CART models for
Kratos and Multipass have near-identical depth and complexity and
also a near-identical prediction error. The NBCART models for Busy-
box, resKIL and x264, on the other hand, provide a notable reduction
of tree depth at the cost of increased prediction error.

While the change in SMAPE for Busybox and resKIL is still accept-
able, x264 file size prediction error is more than ten times higher when



7.2 numeric features in leaf nodes 125

using NBCART rather than CART. This underlines that NBCART are
an incomplete building block on the way towards RMT. The x264

video encoder has a small amount of highly influential numeric con-
figuration variables, and NBCART alone are incapable of handling
them properly.

One way of resolving this is moving numeric features out of the
tree structure entirely so that decision nodes exclusively deal with
boolean and categorical features, and leaf nodes exclusively deal with
numeric features. We will now take the next step towards this goal,
and examine how functions learned by ULS compare to tree-based
models when dealing with sub-sets of product line configurations
whose variability is limited to numeric features.

7.2 numeric features in leaf nodes

As we have seen in Section 3.5, ULS is capable of learning the per-
formance influence of numeric features without user-provided an-
notations and without decision nodes. It has two advantages over
regression tree-based models such as CART or LMT: more expressive
functions and extrapolation.

Whereas regression trees express piecewise constant (or, for LMT,
piecewise linear) functions by means of a decision tree structure, ULS
also has non-linear functions at its disposal. Moreover, CART and DE-
CART can only predict observations that were present during training,
and they do not provide information about the relationship (linear,
square, . . . ) between numeric features and system behaviour. ULS
formulas, on the other hand, can interpolate between observations, ex-
trapolate to predict the performance of configurations that fall outside
the training range, and explicitly show the relationship and relevance
of each numeric feature (e.g. βx or βx2 for some weight β).

However, ULS is incapable of handling boolean or categorical fea-
tures, and its complexity and extrapolation capabilities also increase
the risk of overfitting. So, just like NBCART, ULS is a building block
on the way towards RMT rather than a stand-alone solution.

The idea is to generate the model in such a way that ULS invocations
only see variable numeric features. If all boolean and categorical
features are constant or irrelevant, they can safely be ignored in the
feature vectors passed to ULS. A learning algorithm can achieve this,
for instance, by first generating a tree structure that captures the
performance influence of boolean and categorical features, and then
using ULS to annotate each leaf with a function that expresses the
performance influence of its variable numeric features. This is similar
to the linear functions in LMT leaves, but uses a top-down rather than
bottom-up approach.

Assuming that we have such a learning algorithm, the question is
whether ULS holds up to the claim of being more expressive, and thus



126 regression model trees

hyper-parameter x264 bme680 cc1200 nrf24

Td 5 5 5 5

Tl
m
20

m
5

m
10 3

Table 7.1: Hyper-parameter configurations used for LMT learning. m = |S|
refers to the number of training samples.

more accurate and less complex than regression tree algorithms. To
answer it, we will again compare the prediction error and complex-
ity of various modeling methods: ULS formulas (single continuous
function, no tree structure), CART (piecewise constant function, static
values in leaves), and LMT (piecewise linear function, using linear
regression to obtain leaf functions).

In this case, the evaluation is limited to data sets that do not expose
variable boolean or categorical features: all avilable CC1200 measure-
ments as well as sub-sets of BME680 (320 samples), nRF24 (1,788 for
write and 1,224 for RX), and x264 (216 samples). Each sub-set has a
specific (constant) configuration of non-numeric features and thus
satisfies the requirements of ULS learning. Cross validation and com-
plexity score calculation occur as usual, and the training and validation
sets are again identical for all models within an evaluation target.

CART hyper-parameters for model training use default values
(Tm = Tσ = 0, Td = ∞) and thus favour low prediction error over
low complexity. ULS does not expose training hyper-parameters. For
LMT, I left Tm = 6 at its default value, and performed an automatic
configuration space exploration (also known as hyper-parameter tuning)
to select maximum depth Td and minimum partition size Tl for each
evaluation target so that the cross-validation error is Pareto-minimal.
Note that dfatool uses identical hyper-parameters for all performance
attributes within an evaluation target (e.g. both x264 time and x264

size), hence the need for multi-objective optimization.
In cases where several configurations result in the same cross-

validation error, complexity score minimization serves as tie-breaker.
Table 7.1 lists the resulting hyper-parameter configurations.

As Fig. 7.3 shows, ULS models are consistently least complex and
thus easiest to understand, with a complexity score that is often an
order of magnitude lower than for CART or LMT. At the same time,
prediction error is often identical, and in one instance (x264 encoding
time), ULS provides both the least complex and the most accurate
model. There are just three performance attributes where ULS models
have a higher prediction error than CART or LMT. So, in most cases,
the reduction in complexity that ULS delivers does not come at the
cost of increased prediction error.

The three exceptions to ULS accuracy are x264 output file size,
BME680 active mode power usage, and nRF24 transmission power
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Figure 7.3: Mean absolute percentage error (MAPE) and complexity score of
CART, LMT, and ULS performance models for selected product
lines. Models annotated with a star (⋆) refer to a sub-set of the
configuration space. Solid lines indicate lower error bound.

usage. In all three cases, complexity – or rather the deliberate sim-
plification employed by ULS formulas – is the root cause. In case of
x264 file size, due to encoder implementation details, the number
of encoding threads has a non-linear effect on output file size. The
prediction error clearly shows that CART and LMT are best equipped
for dealing with such performance behaviour. Similarly, the interaction
between configuration variables and power consumption in BME680

active mode and during nRF24 radio transmissions is far from triv-
ial to describe. Here, LMT gain an advantage over CART and ULS
by combining several linear functions into a piecewise linear model
function. Still, in all three cases, the complexity score of ULS is lower,
often by an order of magnitude.

For the remaining five attributes, all three models provide accurate
performance predictions with no more than 2 % mean error. Just like
with x264 encoding time, ULS really shines in these cases: while CART
and LMT need tens to hundreds of nodes to express the observed per-
formance behaviour, ULS formulas have just two to eight components
and are thus much easier to grasp.

Overall, we see that ULS achieves by far the lowest complexity
score. While LMT models offer comparable (and, in two cases, lower)
prediction error, they come with higher complexity. CART, on the other
hand, are the most complex approach when it comes to models that
focus on numeric features, and at the same time often less accurate.

This confirms that unsupervised least-squares regression is a suit-
able method for handling the numeric part of a product line’s per-
formance model. As LMT show, combining decision trees with linear
regression is viable as well, though it comes at the cost of increased
complexity. Now, the challenge is to combine these findings into a
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single RMT data structure and learning algorithm in order to provide
a useful balance between accuracy and complexity.

7.3 data structure

Back in Chapter 6, we have seen that performance attributes of real-
world product lines are affected by both boolean and numeric features.
While existing machine learning methods such as CART are capable
of handling both, the previous sections showed that they strongly
favour accuracy over interpretability rather than balancing the two.
We have also seen that tree structures are a good fit for expressing
the interaction between boolean and categorical features, whereas
least-squares regression provides a good balance between accuracy
and complexity when dealing with numeric features.

While LMT take a first step towards combining the benefits of the
two approaches by allowing linear functions in leaf nodes, they are
not well-equipped for expressing non-linear relationships between
features and performance attributes in an easily interpretable manner.
Moreover, LMT do not distinguish between boolean and numeric
features in the model structure, which also hinders understandability:
in any given path from the root to a leaf node, a numeric feature may
be referenced by more than one node, and it may be referenced both
by decision nodes and by the function in the leaf node.

With Regression Model Trees, I decided to take a more radical
approach towards feature handling in performance models by splitting
the tree structure in two: decision nodes only reference boolean and
categorical variables, and leaf nodes only reference numeric variables.
This way, they combine the feature interaction handling of regression
trees with the expressiveness of least-squares regression formulas.

Considering that at least three distinct numeric values are needed
for ULS fitting, an RMT treats numeric features with just two distinct
values in the training set as categorical variables and thus eligible for
being queried in a decision node. Still, any path through a regression
model tree references each boolean, categorical, or numeric feature
no more than once. So, when a human analyzes the tree structure
and sees that a certain node references a feature, they know that no
parent or child node will reference the same feature. This leads us to
the following formal definition of Regression Model Trees (RMT).

Definition 7.3.1 An RMT is a tree that expresses a piecewise continu-
ous function f : Σn → R. Each non-leaf node holds a query “xi?” for
some variable xi with i ∈ {1, . . . , n}. Each leaf node is annotated with
a function f ′ : Σn → R that only considers numeric parts of Σ.

Boolean variables are defined over the domain {0, 1} or {n, y}, with
0/n indicating a disabled feature (either due to user configuration
or due to unsatisfied dependencies), and 1/y indicating an enabled
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IAQ?

mode?

−1457 + 0.6 · t2 + 440 · log(T) + 32 ·OS85

sleep forced

mode?

119 + 24 ·OS87

sleep forced

n y

Figure 7.4: A regression model tree for prediction of BME680 active mode
power usage. All values in µW, rounded for readability.

feature. The domain of a categorical variable is its set of observed
configuration values (i.e., names of mutually exclusive sub-features).
It may include the special value ⊥, which indicates that the categorical
feature has not been configured due to unsatisfied dependencies or
because it is an optional feature. The domain of a numeric variable
may include ⊥ for the same reason.

Definition 7.3.2 For an RMT f , decision( f ) = ⟨i,⊥⟩ indicates that
its root node holds the query “xi?”. children( f ) = {z1, . . . , zk} re-
turns the set of feature values z for which the node f has a child.
child( f , z) = fz refers to the sub-tree fz that holds the model for
xi = z. Each sub-tree is an RMT as well. If the root node is a leaf
node annotated with the function f ′ : Σn → R, decision( f ) = ⊥ and
value( f ) = f ′.

Fig. 7.4 shows an example regression model tree for prediction
of BME680 active mode power usage. The boolean IAQ (air quality
measurement enabled) and categorical mode (operating mode) fea-
tures determine the tree structure. The numeric OS (oversampling), t
(heater temperature) and T (heater power-on duration) features are
only present in leaves of BME680 configurations, and only in those
where they are influential. We immediately see that the chip has con-
stant power consumption in sleep mode, a minor dependence on
oversampling configuration in active mode without air quality mea-
surements, and an additional influence of heater temperature and
duration in active mode with air quality measurements enabled.

In contrast to CART, LMT and XGB, RMT sub-trees refer to discrete
values rather than numeric ranges. They can, however, be viewed as
a superset of DECART’s tree structure (extending boolean queries
in decision nodes to categorical queries) and LMT’s leaf handling
(allowing for non-linear function templates). Note that the presence
of non-binary nodes also depends on the feature extraction method:
If choices (alternative features) are expressed as groups of boolean
features rather than individual categorical variables, the resulting RMT
will be an ordinary binary tree. We will now examine the algorithms
for learning and querying regression model trees.
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7.4 machine learning algorithm

In principle, learning an RMT consists of just two steps. First, build an
NBCART (Algorithm 9) while ignoring all numeric features that can
be fitted by ULS (i.e., that take at least three distinct numeric values in
the training set). Then, for each leaf, use ULS (Algorithm 8) to build
and fit a regression formula while ignoring all non-numeric features.

However, there is a catch: least-squares regression analysis must only
be used with pair-wise independent features (see Section 2.5.1). Past
chapters have acknowledged this limitation and handled it manually
where needed. This is not feasible for an RMT learning algorithm that
may rely on hundreds or thousands of ULS invocations, each of which
works with a different sub-set of training data. So, using ULS as part
of RMT generation must involve a pre-processing step that detects
and removes co-dependent features before invoking ULS.

We will now examine this pre-processing step in detail, adjust the
ULS algorithm accordingly, and then come to the RMT learning algo-
rithm itself. As usual, we work with a set S = {(x⃗1, y1), . . . , (x⃗m, ym)}
of observations, and use the notation introduced in past chapters.

7.4.1 Co-Dependent Feature Detection

Least-squares regression requires all input variables (i.e., all feature
vector components) to be pair-wise independent. This is a well-known
fact, and methods such as the correlation coefficient allow statisticians
or algorithms to check variables for independence and remove co-
dependent variables beforehand. However, they are tailored towards
regression analysis and therefore limited to numeric values. RMT
also accept features over non-numeric domains and may need to
determine whether pairs of variable numeric and non-numeric features
are independent1.

While any non-numeric domain can be mapped to a numeric
one in order to determine correlation coefficients or similar metrics,
such a mapping imposes meaning that is not actually there. Con-
sider a categorical feature x1 with observed values b, A, B, and a,
and a numeric feature x2 with observed values 8, 2, 4, and 6. As-
sume that the benchmark only contains configurations (x1, x2) ∈
{(A, 2), (B, 4), (a, 6), (b, 8)}, i.e., x1 and x2 are co-dependent. A pre-
processing algorithm might map A ↦→ 1, B ↦→ 2, a ↦→ 3, b ↦→ 4 (lexical
order), A ↦→ 2, B ↦→ 3, a ↦→ 4, b ↦→ 1 (observed order), or use e.g. a ran-
dom mapping. For the first case, the correlation coefficient between x1

and x2 is 1, implying that the features are co-dependent. In the second
case, it is −0.2, suggesting independence – yet, the configurations that

1 Although this is not the case in the algorithm described in this chapter, RMT have
done so in the past and still support experiments that rely on being able to check
numeric and categorical features for independence.
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Algorithm 11 Identify independent features within S.

function IndependentFeatures(S, n)
D ← ∅ ▷ set of co-dependent feature pairs
for i ∈ {1, . . . , n} do

for j ∈ {i + 1, . . . , n} do
if |Vali(S)| > 1∧

⃓⃓
Valj(S)

⃓⃓
> 1 then

D ← D ∪ {(i, j)}
for vi ∈ Vali(S) do

if
⃓⃓{︁

vj|∃x⃗ ∈ X : xi = vi ∧ xj = vj
}︁⃓⃓

> 1 then
D ← D \ {(i, j)}

I ← {1, . . . , n} ▷ set of independent features
for (i, j) ∈ D do

if |Vali(S) ∩R| ≥
⃓⃓
Valj(S) ∩R

⃓⃓
then

I ← I \ {j}
else

I ← I \ {i}
return I

led to this outcome are the same, and the features are certainly not
independent.

Due to this limitation, I decided not to use the correlation coefficient
or similar numeric methods for detecting and removing co-dependent
features. I also opted against analyzing the feature model to identify
those: feature models are only available in SPLs and SPL-like software
projects, but RMT are a general-purpose approach that also supports
configurable hardware and similar.

Instead, the RMT learning algorithm employs a heuristic that relies
on comparing partitions of observed configurations. While this offers
room for future improvement, I have found it to provide usable results
in practice, and did not observe drawbacks compared to a heuristic
that relies on the correlation coefficient.

The idea is as follows: A feature pair (xi, xj) is co-dependent if

• both xi and xj take more than one distinct value, and

• For each distinct value vi of xi, xj is identical in all benchmark
configurations with xi = vi.

For each co-dependent pair, the RMT learning algorithm removes the
feature that takes the lower amount of distinct numeric values. The
idea behind this is that numeric features are generally more helpful
for performance prediction than non-numeric ones. Algorithm 11

describes the check and removal steps in detail.
Going back to the example, we see that x2 is identical in all bench-

mark configurations with x1 = v1 for v1 ∈ Val1(S) = {A, B, a, b}:
x1 = A ⇒ x2 = 2, x1 = B ⇒ x2 = 4, and so on. Moreover, x1 takes
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Algorithm 12 Build and fit an n-dimensional prediction function on
the set of observations S, using the set of function templates G.

function BuildULS′(S, G, n)
F ← ∅
Feat← RelevantFeatures(S, n) ∩ IndependentFeatures(S, n)
for i ∈ Feat do

if FindTemplate(S, G, i) ̸= ⊥ then
F ← F ∪ {FindTemplate(S, G, i)}

if F = ∅ then
return x⃗ ↦→ µ(S)

fit f (x⃗) = ∑F′∈P(F)

(︂
βF′ ·∏ f∈F′ f (x⃗)

)︂
on S

return f

no numeric values (|Val1(S) ∩R| = 0) whereas x2 takes four numeric
values (|Val2(S) ∩R| = 4). So, Algorithm 11 removes feature x1.

In order to add this pre-processing step to the ULS learning algo-
rithm, it is sufficient to replace the RelevantFeatures check with a
check for both RelevantFeatures and IndependentFeatures. Algo-
rithm 12 shows this adjustment.

7.4.2 Tree Generation

Just like all regression tree learners examined thus far, RMT generation
uses a greedy algorithm that recursively adds child nodes until a stop
criterion is satisfied. For decision nodes, it only considers features that
are configured in all benchmark samples (i.e., ⊥ ̸∈ Vali(S)) and not
suitable for ULS. For leaf nodes, it relies on ULS, which only considers
numeric features and leaves out all non-numeric ones.

Note that the learning process does not use type annotations for
features, and instead infers the type of feature i based on the observed
values Vali(S). This increases the flexibility of the approach. As each
decision node partitions S into smaller and smaller sets, individual
features may become meaningless (or meaningful) in individual sub-
trees. For instance, if a numeric feature j depends on a boolean feature
i being enabled, all observations will be either xi = 0 ∧ xj = ⊥ or
xi = 1∧ xj ∈N. When a tree node splits on feature i, feature j becomes
meaningless in the xi = 0 branch, and useful for ULS in the xi = 1
branch.

Algorithm 13 describes the learning process in detail; the following
list outlines its steps in a less formal manner.

1. For each feature xi, examine the unique values that it takes in S.

a) If ⊥ ∈ Vali(S), the feature is undefined (i.e., not configured)
in some configurations: skip it.



7.4 machine learning algorithm 133

Algorithm 13 Build an RMT from observations S using the set of
function templates G.

function BuildRMT(S, G, n)
f ← new RMT
for i ∈ {1, . . . , n} do

if ⊥ ∈ Vali(S) then
SSRi ← ∞ ▷ Feature is partially undefined

else if Vali(S) ⊂ R∧ |Vali(S)| ≥ 3 then
SSRi ← ∞ ▷ Feature can be handled by ULS

else
for z ∈ Vali(S) do

Si,z ← {(x⃗, y) ∈ S|xi = z}
SSRi ← ∑z∈Vali(S) SSR(x⃗ ↦→ µ(Si,z), Si,z)

i← argmin(i, SSRi)

if SSRi ≥ SSR(x⃗ ↦→ µ(S), S) then
decision( f )← ⊥
value( f )← BuildULS’(S, G, n)
return f

decision( f )← ⟨i,⊥⟩
for z ∈ Vali(S) do

child( f , z)← BuildRMT(Si,z, G, n)

return f

b) If Vali(S) ⊂ R and xi takes at least three distinct values, the
feature can be modeled via ULS and it should not be part
of the tree structure: skip it.

c) Otherwise, let z1, . . . , zk be the unique values of xi in S.
Split S into partitions si,z1 , . . . , Si,zk so that Si,zj only contains
entries with xi = zj. Calculate the model error induced by
splitting on xi: SSRi = ∑k

j=1 SSR(x⃗ ↦→ µ(Si,zj), Si,zj).

2. Find the feature xi with the lowest loss SSRi.

3. If all features were skipped or splitting on xi would not im-
prove model error: return a leaf node containing a ULS function
learned on S.

4. Otherwise: transform xi into a decision node “xi?” and repeat
recursively with Si,zj for j ∈ {1, . . . , k}, adding one sub-tree to
“xi?” for each set Si,zj .

In contrast to CART and CART-based algorithms, the RMT learning
process deliberately does not expose user-configurable stop criteria
or hyper-parameters such as |S| < Tm, σ(S) < Tσ, or maximum tree
depth Td. The idea is that RMT learning should be entirely unattended,
without the need for costly hyper-parameter fine-tuning.
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Algorithm 14 Calculate f (x⃗) for an RMT f .

function QueryRMT( f , x⃗)
if decision( f ) = ⊥ then

return value( f )(x⃗)

⟨i,⊥⟩ ← decision( f )
if child( f , xi) then

return QueryRMT(child( f , xi), x⃗)

C ← children( f )
return |C|−1 ·∑z∈C QueryRMT(child( f , z), x⃗)

7.4.3 Queries

The evolution from NBCART to RMT requires little changes in the
query algorithm. Leaf nodes are now functions rather than static
values and must be evaluated accordingly. Apart from that, the special
case for queries which contain values of categorical features that
are not part of the tree structure remains. Just like NBCART, RMT
accommodate these by averaging predictions of known feature values.
The recursive query function is defined in Algorithm 14; it starts at
the root node.

Note that RMT may reference numeric variables both as part of the
tree structure and as part of a leaf’s regression formula. However, no
path from the root to a leaf contains both variants. If a leaf references a
numeric variable, there is no decision node referencing it on the path.
If a leaf does not reference a numeric variable, there may be a such a
decision node.

This allows RMT to express the influence of numeric variables even
if insufficient data for ULS modeling is available, without sacrificing
interpretability. When users encounter a node referencing a numeric
feature during manual model analysis, they know that neither the
path from this node to the root nor any path from the node to a leaf
will reference the same feature. All information related to the feature
is encoded in the single tree node they are currently examining.

7.5 evaluation

To evaluate the accuracy, complexity and learning time of Regression
Model Trees, we will now compare them with related machine learn-
ing methods from the literature (see Section 2.5.2): Classification and
Regression Trees, Linear Model Trees, and Extreme Gradient Boost-
ing. The software projects and hardware components introduced in
Sections 2.7 and 3.6 serve as evaluation targets.
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target boolean categorical numeric samples

Busybox 1,009 991 5 19 32,000

Kratos 39 36 1 2 30,000

Multipass 100 70 6 4 10,000

x264 9 7 0 4 16,800

resKIL 106 0 5 1 14,884

resKIL
Latency

106 0 5 1 3.82 · 106

BME680

FORCED
2 2 0 3 1,140

CC1200 TX 0 0 0 3 4,200

CC1200 RX 0 0 0 2 615

nRF4 write 3 3 1 5 3,720

nRF24 RX 1 1 0 3 1,224

Table 7.2: Number of usable features by type and sample counts of evaluation
targets. The Boolean column indicates total number of features
(left) and number of features that are not part of a choice (right).
Features that have the same value in all observations are left out.

7.5.1 Setup

The CART, LMT, and XGB algorithms only support numeric input
domains (i.e., they learn functions f : Rn → R). Kconfig feature
extraction for these models leaves out choice entries (categorical
features) and string entries, and maps all bool features to 0 (disabled)
or 1 (enabled). For numeric features, it maps all configurations in
which the feature is not configured due to unfulfilled dependencies
(xi = ⊥) to 0. Hardware component evaluations map all non-numeric
feature vector components to numeric values using the lexical order
of observed configurations, and also map undefined features to 0.

Kconfig feature extraction for RMT includes choice entries and thus
leaves out bool features that are part of a choice. The remaining bool

and numeric features are left as-is; it ignores string features as well.
Feature vectors of hardware components are also left as-is.

Table 7.2 lists the feature counts and types that the learning algo-
rithms work with. As in Table 2.3, the left boolean column lists all
boolean features, whereas the right boolean column only lists boolean
features that are not part of a choice. CART, LMT and XGB use the
features listed in the left boolean column and in the numeric column;
RMT models use the features listed in the right boolean column, the
categorical column, and the numeric column.
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target lmt xgb

Td Tl Td K

Busybox 5 m
10 12 20

Kratos 5 m
5 6 600

Multipass 8 m
20 14 150

x264 8 3 8 100

target lmt xgb

Td Tl Td K

resKIL 5 3 14 200

BME680 5 m
20 12 20

CC1200 5 m
10 6 50

nRF24 5 3 6 100

Table 7.3: Hyper-parameter configurations used for LMT and XGB learning.

A feature i is listed as boolean if it takes precisely two values
when defined (|Vali(S) \ {⊥}| = 2). If it takes at least three values
when defined (|Vali(S) \ {⊥}| ≥ 3), it is listed as either numeric (if
Vali(S) ⊂ R ∪ {⊥}) or categorical (otherwise). Note that, in contrast
to Table 2.3, this overview leaves out features that have the same value
in all observed configurations. Those are not useful for performance
prediction and ignored by all evaluated machine learning methods.

The discrepancy in the two x264 boolean cells of Table 7.2 stems
from the fact that both choices in the x264 variability model have just
two options. So, by the definition above, they are either treated as four
boolean options (four Kconfig bool entries) or as two boolean options
(two Kconfig choice entries that have just two distinct values each,
and thus behave like boolean features).

CART model training leaves all hyper-parameters at their default
values (Tm = Tσ = 0, Td = ∞). I confirmed that deviating from
those values consistently leads to increased model error (albeit with
lower complexity) by performing hyper-parameter tuning. So, the only
relevant stop criterion for CART is |{x⃗ | (x⃗, y) ∈ S}| = 1 (i.e., there is
nothing left to split on).

LMT uses the same setup as in Section 7.2. The minimum number
of samples remains at its default value (Tm = 6). Maximupm depth Td
and minimum partition size Tl have been selected for Pareto-minimal
cross-validation error (primary objective) and complexity score (tie-
breaker) by means of hyper-parameter tuning.

XGB learning uses default values for most hyper-parameters: an
influential shrinkage term (η = 0.3), no sub-sampling (r = 1), and
low complexity penalties (γ = 0 and λ = 1). Here, hyper-parameter
tuning adjusts XGB’s maximum depth Td and number of trees K to
minimize cross-validation error (primary objective) and complexity
score (tie-breaker).

Table 7.3 lists LMT and XGB hyper-parameter configurations. The
RMT learning algorithm deliberately does not expose hyper-parameters,
and thus does not mandate a time-intensive tuning process.
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Figure 7.5: Symmetric mean absolute percentage error (SMAPE) and com-
plexity score of Regression Model Trees (RMT) compared to other
machine learning methods on conventional software product lines.
Lower error bound is 0 % in all cases.

7.5.2 Accuracy and Interpretability

We will examine the evaluation targets in three groups: conventional
software product lines where boolean feature toggles are the main
contributor towards performance variability (Busybox, Kratos, Multi-
pass), product lines with influential numeric features (resKIL, x264),
and hardware components (BME680, CC1200, nRF24).

Conventional Software Product Lines

As we have seen in Section 6.3, the performance attributes of Busybox,
Kratos and Multipass are largely independent of numeric feature con-
figurations. From a product line engineering perspective, this makes
them ideal candidates for modeling methods such as CART.

Fig. 7.5 confirms that CART and their sibling XGB consistently
have a low prediction error on these product lines, with less than 4 %
for Busybox and Kratos and less than 8 % for Multipass. However,
with tens of thousands of tree nodes, their models are also the most
complex ones and thus anything but interpretable.

LMT and RMT also achieve less than 4 % error for Busybox and
Kratos. LMT complexity is up to an order of magnitude lower, while
RMT complexity matches that of CART and XGB. Here, hyper-pa-
rameter tuning and the pruning step that is part of the LMT learning
algorithm show their benefit. However, both learning algorithms come
up with a sub-par prediction accuracy for Multipass.

The difficulties that LMT and RMT face when predicting Multipass
ROM and RAM usage are caused by a combination of two factors.
First, while the non-functional properties of Busybox and Kratos are
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largely independent of their numeric features, Multipass performance
is affected by them to a measurable extent (cf. Fig. 6.6). Second, the
benchmarks of all three product lines (including Multipass) rely on
random sampling.

In principle, when looking at a specific numeric feature, the entire
data set contains a variety of configurations for it. However, each
unique configuration of non-numeric features may be paired with just
one unique value of the numeric feature – which is insufficient for
linear or least-squares regression. For Busybox and Kratos, this is not
an issue, as the few numeric features are largely irrelevant. Multipass,
on the other hand, would benefit from a model that uses linear or ULS
functions to describe the effect of its numeric features.

The RMT algorithm is incapable of coming up with such a model
due to its strict distinction between non-leaf nodes (boolean and
categorical features only) and leaf nodes (numeric features only). In
fact, when examining the RMT models for Multipass, all leaves return
static values. This confirms that, once all non-numeric features have
been dealt with during tree structure generation, there is not a single
leaf node that has numeric features with at least three distinct values
left, so ULS returns a static function in all cases. It also explains why
RMT complexity is close to CART: both algorithms use the same
stop criterion and, due to the lack of numeric features that can be
modeled via ULS, both build a tree structure that encompasses nearly
all variable features.

The LMT models, on the other hand, have been pruned too aggres-
sively: The trees for ROM and RAM contain just a dozen leaf nodes
each and attempt to describe most of the product line’s performance
behaviour by means of linear functions. As the cross-validation results
show, neither approach is suitable when using random sampling, and
LMT and RMT learning would likely benefit from a more systematic
data acquisition method [Nai+20; Per+

21]. This is a notable difference
to model learning for purely boolean product lines, where random
sampling is a good match [Guo+

18].
We will examine LMT and RMT performance on data sets that use

systematic rather than random sampling in the resKIL and hardware
component evaluations in the remainder of this section.

Hybrid Product Lines

With the hybrid resKIL product line and its exclusively categorical
and numeric features, things start getting more interesting. We see in
Fig. 7.6 that RMT achieve the lowest or close-to-lowest prediction error
for all resKIL attributes thanks to their combination of categorical
feature support and non-linear function templates. RMT complexity
is also on the lower end of all evaluated modeling methods, and
sufficiently low to allow for manual interpretation. We will use this to



7.5 evaluation 139

re
sK

IL
L

at
en

cy

re
sK

IL
FP

S

re
sK

IL
Si

ze

re
sK

IL
M

em
or

y

x2
6
4

Ti
m

e

x2
6
4

Si
ze

0

50

100

57
.3

24
.9

0.
4 17

.7

3.
7

0.
9

43
.5

17
.3

0.
1 24

.3

5.
8

1.
2

73
.6 84

.7

0.
2

35
.9

5.
1

1.
4

44
.2

14
.1

0.
7 16 14

.7

54
.4

SM
A

PE
[%

] XGB CART LMT RMT

101

103

105

C
om

pl
ex

it
y

Figure 7.6: Symmetric mean absolute percentage error (SMAPE) and com-
plexity score of Regression Model Trees (RMT) compared to other
machine learning methods on hybrid product lines. Solid lines
indicate lower error bound.

gain insights into the performance of neural networks on embedded
systems in Section 8.1.

While CART and XGB prediction error for resKIL performance at-
tributes is close to RMT, these models are more complex and thus
less easy to understand. LMT, on the other hand, come with lower
complexity but two to ten times higher prediction error. Hence, RMT
are clearly the best option for prediction and analysis of resKIL per-
formance attributes.

When it comes to x264, the CART, LMT and XGB models all have
a prediction error of less than 6 % and a high complexity score of
1, 000 to 100, 000. Prediction error for encoding duration is in fact
better than the 9 to 37 % reported in the literature [Sie+

15; Zha+
15;

DAS21] – however, note that all listed references use different sampling
strategies and sample sizes, and consider different x264 features for
performance modeling. I am not aware of publications that predict
output file size.

While RMT models for x264 also have a complexity score of around
1, 000, their prediction error is far higher, especially for output file
size. In this case, sampling is not the root cause. Instead, the x264

implementation is so complex that its performance attributes cannot
be predicted adequately by tree structures that move numeric features
into leaf nodes.

In all non-RMT models, the decision nodes closest to the root refer to
numeric variables such as desired encoding quality (in variable bit rate
mode), bit rate (in fixed bit rate mode), and output width/height. This
indicates that x264’s numeric features are far more influential than
its boolean feature toggles. RMT do not allow decisions on numeric
features and handle them in leaf nodes instead.
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Figure 7.7: Mean absolute percentage error (MAPE) and complexity score
of Regression Model Trees (RMT) compared to other machine
learning methods on energy models for hardware components.
Solid lines indicate lower error bound.

We have already seen in Fig. 7.3 that this does not work well for
x264. All three evaluated modeling methods (CART, LMT, ULS) have
difficulties when predicting the performance of x264 configurations
that only vary numeric feature toggles. This applies to all benchmark
data sub-sets of x264 that have constant boolean and variable numeric
configurations: the cross-validated SMAPE of CART, LMT and ULS
models on any of these data sets is consistently higher than the CART,
LMT and XGB SMAPE values shown in Fig. 7.6. Similarly, adjusting
the RMT algorithm to use CART or symbolic regression rather than
ULS does not lead to noteworthy improvements in prediction error.

So, the high RMT prediction error for x264 is not an issue of ULS,
but a consequence of x264’s complexity and RMT’s strict distinction
between boolean/categorical decision nodes and numeric leaf nodes.
The most accurate interpretable model that I am aware of, utilizing a
regression formula with less than 20 feature- and pair-wise interaction
terms to predict how eight boolean and 13 numeric features affect
x264 encoding time, achieves a prediction error of 12.5 % [Sie+

15]. The
x264 video encoder may simply be so complex that the currently well-
known modeling methods are incapable of describing its performance
in an interpretable and highly accurate manner.

Hardware Components

For the third and final evaluation set, Fig. 7.7 shows how RMT and
other machine learning algorithms fare when working with energy
attributes of hardware components. Here, the situation is different: all
four algorithms achieve a low prediction error of less than 8 %, and in
all but one cases the difference between the best and worst model for
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a given energy attribute is less than two percentage points. Instead,
the complexity scores differ by several orders of magnitude.

XGB uses nearly 10, 000 tree nodes in all cases, while CART achieve
the same prediction error with 100 to 1, 000. LMT complexity score
ranges from 10 to 200, and RMT complexity is by far the lowest,
utilizing just 1 to 20 tree nodes and regression formula components.

So, just like with the hybrid resKIL product line, RMT are clearly the
best option for predicting and interpreting how run-time configuration
affects the energy behaviour of hardware components. Their prediction
error is on par with established methods from the SPLE community,
while their complexity is lower by several orders of magnitude. We
will now examine whether they are also able to transform training
data into performance models in a timely manner.

7.5.3 Learning Time

As their name suggests, a key goal of interpretable models is to
provide users with ways of gaining novel insights into how a system
component’s configuration affects its performance values. As such, the
associated machine learning method should be able to quickly learn a
performance model from benchmark data so that users can inspect it.

While we cannot evaluate this aspect in a completely fair manner
– the RMT implementation is strictly a research project that favours
experimentation and extendability over performance, whereas CART,
LMT and XGB are optimized for speed – it is still interesting to see in
which order of magnitude the algorithms operate.

Since dfatool works with entire system components (product lines or
hardware components) rather than individual performance attributes,
we will review the learning time for entire components (e.g. CC1200

or resKIL) rather than individual performance attributes.
From a model learning complexity point of view, the evaluation

set contains two classes of targets. The first class (Busybox, Kratos,
Multipass and resKIL) comes with a high-dimensional configuration
space (n ≈ 100 to n ≈ 1, 000) and thousands to millions of samples
(k ≈ 104 to k ≈ 106). The second class (x264, BME680, CC1200 and
nRF24) has a low-dimensional configuration space (n ≈ 10) and a low
amount of samples (k ≈ 103). Fig. 7.8 shows the learning times.

In the first class, all evaluated algorithms struggle with the amount
of data. CART are fastest, with a few seconds to nine minutes for
model training. RMT come in next, with 50 seconds to 22 minutes.
XGB manages to stay just below an hour, and LMT model learning
can even take slightly more than six hours. For XGB and LMT, hyper-
parameter tuning adds several additional weeks of processing time.

Combined with the accuracy and complexity figures shown in
Figures 7.5 and 7.6, we see that RMT are the ideal choice for the
hybrid resKIL product line: they are fastest, most accurate, and least
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Figure 7.8: Wall-clock time for model learning on an AMD EPYC 7763 CPU.

complex. For Busybox, Kratos and Multipass, CART are a good choice,
albeit less easy to interpret when dealing with alternative features (cf.
Section 7.1).

In the second class, all algorithms take less than a minute to come
up with a model. CART and XGB are near-instantaneous with no
more than two seconds, whereas LMT take up to 21 seconds and the
unoptimized RMT implementation needs up to 45. However, as we
have seen in Fig. 7.7, waiting a little longer for RMT generation pays
off by obtaining a much easier to understand and equally accurate
model. Here, LMT and XGB come with an additional 10 to 60 minutes
of hyper-parameter tuning overhead.

Overall, we see that there is no single modeling method that per-
forms best in all application scenarios. However, we can conclude
that RMT achieve a good balance of accuracy (low prediction error),
interpretability (low complexity), and speed in many cases. Although
CART offer comparable accuracy and faster model generation, they
are more complex by up to two orders of magnitude and thus less
suitable for interpretation by humans, especially when working with
hybrid product lines and energy models.

We have also seen that the RMT algorithm trades accuracy for
interpretability in some cases, especially when faced with unsuitable
sampling techniques (Multipass) or complex performance behaviour
(x264). Improved sampling, an extension with LMT-style pruning, and
(in rare cases) a relaxation of the strict distinction between categorical
decision nodes and numeric leaf nodes will likely improve accuracy
with minimal interpretability drawbacks.

7.6 related work

We have already examined CART, DECART, LMT, XGB, least-squares
regression and ULS in Sections 2.5 and 3.5. Moreover, Sections 3.2 and
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5.2.6 have covered sampling and modeling methods that specifically
focus on state machines and energy models.

This section looks into additional work that relates to RMT and
product lines in general. We will cover two fields: the machine learning
algorithm itself (modeling methods) as well as data acquisition and
feature extraction (sampling).

7.6.1 Modeling Methods

As mentioned previously, CART and DECART are a staple of SPLE
performance modeling research that focuses on the effect of exclusively
boolean feature toggles [Per+

21]. For instance, given a product line
with n feature toggles, DECART can often achieve less than 10 %
model error with less than 10 · n samples [Guo+

18]. However, they do
not support numeric or choice features, and are not tailored towards
interpretability.

Linear model trees are less common. In one case, they have been
used for predicting software faults from software quality attributes
with a 5 to 50 % model error [RK16]. Due to their flexibility of referring
to numeric features both in binary splits and in regression formulas in
leaf nodes, LMT learning is generally slower than working with less
expressive models such as CART or XGB [Loh14]. We have observed
this in Section 7.5.3.

Zhang et al.’s provably-optimal sparse regression trees (SRT) divert
from the greedy algorithms of the past and build upon dynamic
programming with bounds instead [Zha+

23]. While this approach has
shown promising results both in terms of accuracy and interpretability,
it does not support categorical or numeric features yet. Instead, it
relies on pre-processing to turn them into boolean pseudo-features,
thus hindering interpretability especially when dealing with hybrid
product lines and energy models for hardware components.

Acher et al. propose a different way of reducing model complexity
and prediction error: they employ a feature sub-set selection pre-
processing step, thus identifying relevant features and leaving out
irrelevant ones during model learning. The motivation behind this
is similar to the RelevantFeatures algorithm used within ULS, and
incorporating it into RMT is an interesting avenue for future work.
Combined with a regression forest, Acher et al. achieve a MAPE of less
than 7 % when predicting Linux kernel size from its configuration op-
tions, while speeding up learning time by a factor of 5 to 48 [Ach+

22].
They do not mention model complexity and instead focus on the mis-
match between features that influence kernel size according to Linux
kernel documentation and features that actually influence kernel size
according to the model.

P4 focuses on prediction error rather than interpretability, and ad-
dresses the issue that the precise performance influence of individ-
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method input output specialty

RMT Σn continuous interpretable

CART [Bre+
84] Rn constant

DECART [Guo+
18] {0, 1}n (constant) few training samples

LMT [Qui+
92] Rn linear

XGB [CG16] Rn linear ensemble method

SRT [Zha+
23] {0, 1}n (constant) interpretable

Sub-sets [Ach+
22] {0, 1}n (constant) faster learning

P4 [DAS21] {0, 1}n (constant) confidence intervals

NN [Her+
22] Rn continuous manual model design

Table 7.4: Input domains, piecewise output functions, and distinguishing at-
tributes of RMT and related modeling methods from the literature.
Models over {0, 1}n have piecewise constant output by design.

ual features can rarely be modeled with 100 % accuracy [DAS21].
Dorn, Apel, and Siegmund combine feature sub-set selection with
feature- and pair-wise annotation in a regression model while ex-
plicitly considering model confidence. This allows them to associate
each performance prediction with a confidence interval, and also iden-
tify individual features that come with a high uncertainty. Like most
approaches covered here, P4 is limited to boolean feature toggles.

Finally, BEARS is a utility for improving the energy efficiency of
configurable software systems by means of automatic, workload-
dependent re-configuration [Her+

22]. Herzog et al. evaluate a variety
of regression tree and least squares regression models and compare
them to a custom neural network (NN) architecture. While I am not
aware of model-specific MAPE or SMAPE measures, their findings
indicate that the neural network model achieves the highest energy
efficiency improvements. They also show that tree and least squares re-
gression models allow for energy efficiency improvements. In contrast
to neural networks, those do not rely on manual model design.

Table 7.4 compares the key attributes of RMT, the modeling methods
presented in Section 2.5, and the related work covered in this section.

7.6.2 Sampling

The work by Siegmund et al. combines accurate model generation
with efficient sampling and supports both boolean and numeric fea-
tures [Sie+

15]. The authors utilize Plackett-Burman experiment design
to determine the effect of numeric feature configurations [PB46], and
find that it is superior to random sampling approaches. Model gen-
eration relies on linear regression with optional feature-interaction
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support, and has been designed with interpretability in mind. For
instance, when evaluating x264 video encoder configuration by vary-
ing eight boolean and 13 numeric features, they are able to predict
encoding time with an error of 12.5 % with just 636 samples. The
sampling setup is highly influential; different approaches range from
15 % error with 1046 samples to 36.7 % error with 216 samples. With
less than 20 terms, the corresponding regression formulas are easily
interpretable by humans.

L2S, on the other hand, follows an active sampling approach that
considers environment (e.g. hardware and workload) changes in addi-
tion to conventional feature re-configuration [Jam+

18]. In contrast to
the resKIL product line, it does not model hardware components as
explicit features. Given a model for one target environment, L2S auto-
matically infers benchmark configurations that should be measured in
order to adjust the model for a new environment, without having to
repeat all benchmarks for each new environment. When modeling the
latency of an AI application and adapting the model to hardware and
workload changes, Jamshidi et al. report a model error of 7 to 20 %.
While CART serve as underlying modeling method, the documented
approach is limited to boolean feature toggles.

FLASH also relies on active sampling, but with a focus on opti-
mization rather than performance model generation [Nai+

20]. Given
a set of optimization goals, it automatically determines benchmark
configurations so that a CART model trained on those can be used
to find Pareto-optimal system configurations for these specific goals.
It supports boolean and numeric features, but relies on optimization
goals that must be known beforehand. Whenever those are changed,
it must perform new benchmarks and train a new model.

Finally, Fourier Learning is similar to P4 insofar as that it focuses
on prediction error, but during sampling rather than in the generated
model [Zha+

21]. It allows users to specify a maximum prediction error
and guarantees that any model trained with an appropriate number
of samples (which is a function of the prediction error) will satisfy the
specified accuracy bound. However, as the variables used by Fourier
Learning models do not directly relate to product line features or
configuration variables, they are anything but interpretable.

7.7 chapter summary

This chapter has presented Regression Model Trees (RMT), a data
structure and machine learning method that combines and extends
ideas from the SPLE non-functional property modeling and CPS/IoT
energy modeling communities. RMT utilize non-binary decision nodes
in order to encode information about groups of alternative features
in a shallow and easy-to-understand manner, and rely on ULS to
automatically find and fit interpretable functions that describe the
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influence of numeric features in leaf nodes. Their tree structure sep-
arates boolean/categorical features (decision nodes) from numeric
features (leaf nodes) and ensures that, in each path from the root to a
leaf node, each feature is associated with no more than one tree node.

As the evaluation has shown, combining ideas from these otherwise
disjunct communities pays off whenever influential numeric features
are present and an appropriate sampling technique for training data
acquisition is used.

For the hybrid resKIL product line, RMT achieve both the lowest
model error and – despite not being optimized for speed – the lowest
learning time, with a model complexity that still allows for manual
inspection. On the hardware side, RMT are consistently one to two
order of magnitudes less complex than other methods, whereas model
error is comparable in all but one cases. Additionally, in contrast
to established methods such as linear regression, RMT are able to
deal with hardware behaviour that depends on boolean or categorical
features without having to encode this decision as part of the state
machine structure and thus suffering a state space explosion [Che+

17].
Of course, an algorithm is rarely ever complete, and RMT are no

exception. The evaluation and literature review have shown that the
current RMT design tends to sacrifice accuracy for interpretability.
For instance, when it comes to the x264 video encoder, relaxing the
distinction between boolean/categorical and numeric features in the
tree structure by allowing decision nodes to decide on numeric fea-
tures when appropriate will likely prove helpful. I also expect that
incorporating the ULS RelevantFeatures heuristic and/or adapting
the one utilized by Acher et al. to decrease the number of features
considered for RMT generation will decrease model complexity when
dealing with product lines such as Busybox [Ach+

22].
Nevertheless, the RMT algorithm and its evaluation have already

given a positive answer to RQ3: the challenges faced by the SPLE
non-functional property modeling and CPS/IoT energy modeling
communities are not as different as one might expect, and combining
approaches from the two communities benefits both of them. Users can
obtain accurate and interpretable models in a timely manner without
having to provide any kind of domain information or model structure.

We will now examine three practical applications of RMT: an analy-
sis of embedded machine learning performance, a performance-aware
product line configuration frontend, and an analysis of trade-offs
between data processing cost and data transfer cost. The first appli-
cation includes manual interpretation of RMT models for the resKIL
product line. The third one shows how engineers can combine already-
available performance models for system components when building
performance models for a new produtc line.
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While low complexity – as a proxy metric for interpretability – and low
prediction error are desirable goals when designing machine learning
algorithms for performance model generation, a performance model is
not a cause unto itself. It is most useful when configuring or reasoning
about real-world software systems and hardware components. The
context in which a performance model is used may also impose (or
relax) accuracy and interpretability constraints that are not necessarily
captured adequately by a single average percentage error or model
complexity score.

Moreover, most evaluation targets used so far – and most evaluation
targets used in the literature – consider either variable software or
variable hardware components, but not a combination of both. While
Section 2.7.2 has already established resKIL as a hybrid product line
with variability in both aspects, it has not addressed whether it makes
sense to apply conventional product line engineering techniques in
such a case to begin with.

This chapter presents three real-world case studies to cover these
aspects:

• the resKIL agricultural AI product line (Section 8.1),

• the kconfig-webconf drop-in replacement for retrofitting perfor-
mance models onto existing Kconfig-based product lines (Section
8.2), and

• a trade-off analysis of data serialization formats in wireless IoT
networks (Section 8.3).

The resKIL agricultural AI product line combines configurable soft-
ware with interchangeable hardware components, while the data
serialization format analysis combines configurable hardware and soft-
ware components with workload-dependent performance attributes.
Together, these serve as an answer to RQ4: are product line engineer-
ing and performance modeling techniques also applicable to product
lines that cover soft- and hardware variability?

kconfig-webconf, on the other hand, focuses on the machine-readable
aspect of performance models. It shows that utilizing them to annotate
product line features with non-functional properties is not difficult,
and that adding performance models to existing product lines and
other kinds of configurable software systems only requires a mini-
mal amount of manual labour. kconfig-webconf and resKIL, which
also serves as a case study for kconfig-webconf, provide context for
evaluating the interpretability and accuracy of RMT models.

147
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8.1 black-box models for ai software systems

Related publication: Birte Friesel and Olaf Spinczyk. “Black-Box
Models for Non-Functional Properties of AI Software Systems”.
In: Proceedings of the 1st International Conference on AI Engineering:
Software Engineering for AI. CAIN ’22. Pittsburgh, PA, USA:
Association for Computing Machinery, May 2022, pp. 170–
180. isbn: 978-1-4503-9275-4. doi: 10.1145/3522664.3528602
[FS22a]

Artificial Intelligence (AI) applications operate under a variety of
optimization goals and constraints. On the one hand, they must satisfy
use case-specific minimum accuracy and maximum latency demands.
On the other hand, they should have low hardware cost and – espe-
cially for batch processing – high throughput. They also come with a
wide range of AI-capable machine learning methods, corresponding
software platforms, optimization methods, and hardware platforms
for executing them. So, selecting and configuring software and hard-
ware components that fulfil certain functional properties and satisfy
(non-functional) performance requirements is challenging.

Neural Networks (NNs) are a prominent machine learning method
for AI solutions, and a core component of the resKIL agricultural AI
product line that I designed as part of this thesis. They, too, come in
a variety of flavours that affect the availability of software optimiza-
tion methods and the ability to use hardware accelerators for NN
inference. However, existing research on NN performance has focused
on optimizing individual neural networks rather than selecting and
configuring suitable combinations of software, hardware, and NN
components. This section examines whether it is viable to apply SPLE
techniques to this domain, and whether it can benefit from associated
performance modeling methods such as RMT.

Before diving into the product line itself, Section 8.1.1 introduces
the design space of neural network platforms that is relevant here,
the motivation and context behind the resKIL product line, and ap-
proaches for NN performance modeling. Afterwards, Section 8.1.2
presents the product line and thus shows that domain engineers can
formally express the variability within a real-world AI product line as
a feature model. Sections 8.1.3 and 8.1.4 follow up with a performance
model analysis and find that both software and hardware selection and
configuration affect AI performance. Finally, Section 8.1.5 examines
related work in the field of performance models for neural networks,
and Section 8.1.6 concludes this excursion into AI engineering.

https://doi.org/10.1145/3522664.3528602
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8.1.1 Introduction

With appropriate training as well as pre- and post-processing, neural
networks are capable of a wide range of tasks such as classifying items
for quality control or identifying the position and type of objects in
front of a vehicle. The former application associates each input image
with a class (e.g. “not ripe yet”, “ripe”, “rotten”) and is commonly
known as classification. The latter example encompasses two applica-
tion domains: semantic segmentation networks associate each pixel with
a confidence score for each known class (e.g. object type or “no known
object”), whereas object detection networks output (possibly overlap-
ping) rectangular boxes around identified objects, each of which is
annotated with a class and a confidence score.

Developers can choose between NN inference frameworks such
as PyTorch, TensorFlow or TensorFlow Lite in order to apply neural
networks to these tasks. Each framework comes with a different set
of optimization options and supported hardware accelerators, and
neural network architectures may be available for all or only spe-
cific NN frameworks. For instance, TensorFlow Lite – a TensorFlow
variant specifically tailored towards resource-constrained embedded
platforms – supports quantization: replacing 32-bit floating point val-
ues and math operations inside the network with 16-bit floats or 8-bit
integers to reduce model size and latency at the cost of accuracy.

Finally, at run-time, many neural networks can analyze a single
image at a time or a batch of multiple images. Batching can help allevi-
ate the overhead of invoking the inference framework and improve
resource utilization through parallel data processing, especially when
using GPUs or other hardware accelerators.

The resKIL project1, funded by the Federal Ministry of Food and
Agriculture (BMEL) via the Federal Office for Agriculture and Food
(BLE), is directly connected to this domain. One of its goals is to obtain
insights into the effects of hardware, software, and neural network
architecture selection on AI performance by exploring, benchmarking,
and modeling the design space of agricultural AI applications that
build upon neural networks. This differs from the majority of existing
AI engineering research, which focuses on the effect of neural network
layout on prediction performance [Tan+

19; Yu+
21; LDL21].

For instance, an AI-enabled harvester may combine on-board cam-
eras with a neural network for semantic segmentation to provide a
driving aid that identifies tracks and distinguishes between harvested
and non-harvested areas, or to fine-tune harvester operation for opti-
mal yield. It might also use a less compute-intensive object detection
network for obstacle detection, or a fast classification network for
quality assurance of individual harvested items.

1 “resKIL” refers to “ressourceneffiziente KI für eingebettete Systeme in Landmaschi-
nen”, i.e., resource-efficient agricultural AI: ess.cs.uos.de/research/projects/resKIL.

https://ess.cs.uos.de/research/projects/resKIL/
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Optimization goals and constraints depend on the use case. Har-
vester adjustments take several seconds, so low neural network latency
is not critical and developers may be able to improve accuracy at the
cost of higher latency. Obstacle detection, on the other hand, should
react at least as fast as a human driver would, and have as little false-
positive and false-negative findings as possible. At the same time,
hardware and software selection affect the set of viable neural network
architectures and their latency and throughput attributes.

In contrast to performance models for conventional software prod-
uct lines or embedded peripherals, this application domain covers
four interdependent aspects: hardware selection, software selection
(inference framework and neural network architecture), static software
configuration (model quantization), and run-time software configura-
tion (batch size). The AI and NN performance modeling research that
I am aware of only considers a sub-set of this configuration space and
does not employ SPLE methodologies.

There are two approaches for building and using performance
models in this domain: black-box and white-box models.

Black-box performance models apply conventional performance
modeling techniques to the AI engineering domain. Each neural net-
work architecture, hardware platform, and other tunable element of
the AI application is a configuration option. The models are not aware
of the internal structure of neural networks or hardware components
and treat them as a black box – hence the term black-box modeling.

White-box performance models, on the other hand, take these details
into account. They associate each neural network architecture with a
multi-dimensional feature vector that covers, for instance, the number
of floating point operations, layers, kernel sizes, and other attributes.
This allows for performance prediction of unseen architectures, and
is commonly used for automatic optimization of AI architectures –
also known as Neural Architecture Search [Ban+

21; Tan+
19]. In some

cases, they also take hardware capabilities into account, and describe
the number of cores or floating point performance [LDL21]. While
this makes white-box models more versatile than black-box models, it
comes at the cost of requiring a larger set of training samples.

As this thesis focuses on performance modeling for product lines
(and configurable systems that behave like SPLs) rather than neural
network optimization or neural architecture search, the resKIL product
line and associated performance models take a black-box approach.

8.1.2 The resKIL Product Line

The resKIL agricultural AI product line has four sources of variability:

• image processing task (classification, object detection, or seman-
tic segmentation) and associated neural network architectures,
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• inference framework (TensorFlow, TensorFlow Lite, PyTorch)
and platform-specific optimization methods (e.g. quantization
or GPU offloading),

• run-time settings (batch size), and

• the hardware platform used for inference.

Hardware platforms include Raspberry Pi 4, three NVIDIA Jetson
variants (Nano, Xavier NX, Xavier AGX), Google’s Coral EdgeTPU
board, and three resKIL-specific evaluation kits. The variability model
considers each hardware component as a black box with fixed (and,
from the model’s point of view, unknown) memory, CPU and GPU
configuration. Inference frameworks are free to use all available hard-
ware resources.

The NN architecture line-up consists of 26 KERAS classification
architectures, 30 architectures downloaded from TensorFlow hub (18

for object detection, twelve for semantic segmentation), and 26 PyTorch
architectures. The toolchain is also compatible with neural networks
provided by resKIL project partners – however, as those are proprietary
and thus not usable for reproducing results, they are not relevant here.

All KERAS and TensorFlow hub networks work with TensorFlow
by default and are converted to TensorFlow Lite for benchmarking
and performance model generation. Conversion uses quantization
and optimization (tf.lite.Optimization.DEFAULT) in three modes:
default (partial 8-bit integer), 16-bit float, and full 8-bit integer. Default
mode quantizes all network weights to 8-bit integers and uses 32-bit
floating point values and math operations for everything else – i.e.,
it only differs from a TensorFlow model in the way the weights are
stored. 16-bit float quantization is recommended for GPU accelerators
and replaces all 32-bit float values with 16-bit equivalents. Full integer
quantization replaces all values and math operations with 8-bit inte-
gers and is required for special-purpose accelerators that only support
integer operations.

Default and 16-bit float optimization come in two flavours: one that
uses sample images to determine the range of input-dependent math
operations and thus reduce the accuracy loss of the quantized network,
and one that does not. For full integer quantization, access to sample
images is mandatory. So, there are up to five TensorFlow Lite model
flavours for each TensorFlow model.

Note that all TensorFlow Lite optimization methods only support
subsets of TensorFlow neural network operators. Hence, depending
on the neural network architecture in question, some TensorFlow Lite
variants are unavailable. For Coral EdgeTPU, there is a sixth flavour
that executes full integer models on the on-board Tensor Processing
Unit (TPU) accelerator rather than on the CPU.

Evaluation data for PyTorch networks and NVIDIA Jetson AGX
hardware has been provided by my colleague Matheus Ferraz. It is
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resKIL

Task

Classification NN Arch · · ·

Detection NN Arch · · ·

Segmentation NN Arch · · ·

NN Platform

PyTorch Opt · · ·

TensorFlow

TensorFlow Lite Opt

Default

Float16

Int8

· · ·
HW Platform

Raspberry Pi 4

Jetson Xavier

· · ·

Batch Size

Figure 8.1: Excerpt from the resKIL product line’s feature model.

part of training and evaluation data, and thus affects complexity and
accuracy of the resKIL performance models evaluated in the previous
chapter (Section 7.5). The performance model analysis in this section
focuses on TensorFlow and TensorFlow Lite without Jetson AGX.

Fig. 8.1 shows the feature model for the resKIL agricultural AI
product line, excluding cross-tree constraints, NN architecture names,
and some optimizations and hardware platforms for brevity. Cross-
tree constraints include PyTorch and TensorFlow only being available
on Raspberry Pi 4 and Jetson boards, EdgeTPU-optimized TensorFlow
Lite models only working on the Coral EdgeTPU hardware platform,
and NN architectures without batching support that always utilize a
Batch Size of one.

The resKIL project examines five performance metrics: inference
accuracy, inference latency, inference throughput, model size, and
peak memory usage during inference.

Latency refers to the time between providing an image or a batch of
images to the inference framework and obtaining annotated results,
and decides whether a product is fast enough for tasks such as obstacle
detection. Model size is most relevant for updating neural networks
over slow mobile data links. Memory usage determines, among others,
whether the resKIL product can be used together with other applica-
tions on the same embedded device. It includes the memory usage of
accelerators such as GPUs that share memory with the CPU.

Manual performance annotations provided by a domain expert are
not feasible here, as performance attributes depend on complex inter-
actions between hardware platform, NN platform, NN architecture,
and batch size. There is no single, well-defined latency or through-
put effect of “Raspberry Pi 4” or “Int8”. Hence, we now move on
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to the benchmark setup used for automated generation of resKIL
performance models.

8.1.3 Benchmark Setup

As usual, the goal is to select configurations X = {x⃗1, . . . , x⃗n} and,
for each performance attribute, obtain corresponding performance
measurements Y = {y1, . . . , yn} that can be fed into the RMT learning
algorithm for performance modeling.

The resKIL configuration space is small enough to allow for a
systematic exploration of valid configurations, and only the numeric
batch size setting mandates using a sub-set of the configuration space.
TensorFlow benchmarks use batch sizes of 1, 2, 4, 8, 16, 32, and 64,
if sufficient memory is available. TensorFlow Lite benchmarks are
limited to batch sizes of 1, 4, 8, and 16.

Running the complete set of benchmarks for this product line takes
about a week and is fully automated. While this is too long for a
practical application that relies on rapid turnaround to quickly pro-
vide feedback to AI engineers, such an application is not the intended
use case here. Instead, the goal within the resKIL project is to thor-
oughly examine neural network performance on embedded platforms.
Considering that recommended sampling methods depend on the
performance model type, and that data-efficient model generation
is an active research field without clear guidelines [Zha+

15; Nai+
20],

resKIL performance data acquisition errs on the side of caution.
The benchmarks use the latest Python3, TensorFlow (Lite) and

PyTorch versions available for the respective hardware platform as
of late 2021. Each benchmark takes a series of images, performs pre-
processing (scaling and normalization) if necessary, and then uses a
pre-trained neural network to perform classification, object detection,
or semantic segmentation. Depending on batch size configuration,
it processes images one by one or in batches of up to 64 images.
In case the number of images is not a whole-numbered multiple of
the batch size, it fills the last batch with random data and ignores
the corresponding results when evaluating inference accuracy. While
doing so, it captures resKIL performance attributes as follows.

• Latency (s): model.predict or interpreter.invoke wall-clock
run-time, excluding the first function call (i.e., the first image or
the first batch)2.

• Throughput (FPS): Batch size divided by median latency of the
current benchmark run.

2 In TensorFlow and PyTorch, the first function call is often slower than follow-up
function calls. Benchmarks in the literature typically ignore it; after all, practical
applications rarely perform just one inference.
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• Memory Usage (MB): Memory allocated during benchmark execu-
tion, excluding background memory load caused by the operat-
ing system. Includes memory overhead for image pre-processing
and a few kB of benchmark data storage.

• Model Size (MB): Serialized size of the neural network.

• Accuracy: F1 Score, defined as the harmonic mean of precision p
and recall r: F1 = 2 · p·r

p+r . Precision is the ratio of true positives
in all classification results that report a specific class; recall is
the ratio of true positives in all results that belong to a specific
(ground truth) class.

Note that the accuracy metric has a caveat attached. The pre-trained
neural networks used in this evaluation come from different sources
with, at least in some cases, unknown training data sets and possibly
different intended application domains. It is not sensible to compare
the accuracy of different neural network architectures under these
circumstances.

Due to this, the evaluation in Section 7.5 left out accuracy entirely,
and the analysis here only examines the effect of quantization on
neural network accuracy. So, it only compares the accuracy of different
flavours of the same neural network, making its findings robust against
different training setups.

Each benchmark run with N images and batch size B generates a
single throughput, memory usage, and model size result, as well as
⌈N

B ⌉ − 1 latency values and N accuracy scores. It is repeated once so
that there are at least two samples for each distinct product line config-
uration x⃗. This is relevant for latency, throughput and memory usage,
which are influenced by the Linux system running on the evaluated
hardware platforms. Model size and accuracy are deterministic.

8.1.4 Findings

We will now examine RMT models and corresponding benchmark data
to determine how individual resKIL features affect its performance
metrics. This also serves as an opportunity to asses RMT interpretabil-
ity on a real-world product line. Although Fig. 7.6 shows a high
complexity score for resKIL RMT models, their shallow tree structure
and ULS-fitted leaf functions may be helpful for gaining insights into
product line performance regardless.

Batch Size

When it comes to the effect of batch size on NN performance, the
RMT model for inference throughput is most interesting. It contains
many sub-trees with a structure as shown in Fig. 8.2, indicating that
throughput is a linear function of batch size when using TensorFlow,
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Figure 8.2: A common sub-structure in the resKIL RMT model for neural
network throughput.

0 10 20 30 40 50 60 70
0

100

200

Batch Size

T
h
ro
u
gh

p
u
t
[F
P
S
]

TensorFlow

TFLite (Default)

TFLite (Float16)

TFLite (Int8)

Figure 8.3: MobileNet v3 throughput for TensorFlow and TensorFlow Lite
(TFLite) variants on a Jetson Xavier NX board.

and independent of batch size when using TensorFlow Lite. Also, in
many cases, the constant part of TensorFlow throughput (β0) is lower
than the constant for TensorFlow Lite throughput (c). So, according
to the performance model, TensorFlow Lite often provides higher
throughput than TensorFlow when using low batch sizes or no batch
processing at all, whereas TensorFlow is better for large batches.

A look at raw benchmark data confirms that the RMT model has cor-
rectly captured the underlying hardware behaviour. With TensorFlow,
increasing the batch size often causes a linear increase in throughput,
whereas it has little effect with TensorFlow Lite – the best observed
case is a 50 % increase in throughput when increasing the batch size
from one to 16. Also, for low batch sizes, TensorFlow Lite is indeed
faster than TensorFlow; the break-even point depends on hardware
and NN architecture. This effect affects both CPU-only and GPU- or
TPU-accelerated neural network inference.

For example, Fig. 8.3 shows throughput versus batch size for Mo-
bileNet v3 image classification on a Jetson Xavier NX board. The three
TensorFlow Lite variants achieve nearly constant throughput between
40 and 60 FPS, whereas TensorFlow starts out at 6 and grows up to
200 FPS. In this case, break-even occurs at a batch size of eight.

The effect on memory usage depends on the accelerator. With CPU-
only inference, there is a linear relationship to batch size, as each
image needs the same amount of memory for processing. On GPU-
and TPU-accelerated platforms (Jetson Nano, Jetson Xavier, Coral
EdgeTPU), memory usage is nearly constant and higher batch sizes
only marginally increase it. Judging from the documentation, this
is likely due to eager memory allocation strategies used on these
accelerator platforms: on startup, they allocate a fixed-size chunk of
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Figure 8.4: Latency distribution of TensorFlow Lite with Int8 and Float16

quantization relative to Default optimization settings. The dashed
line indicates equal performance ( t
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= 1): samples on the

left are faster than Default and samples on the right are slower.
Each relative latency sample compares benchmark results with
identical hardware, neural network architecture, and run-time
configuration.

memory, and increase the allocated space if it is insufficient. While at
least some of them support on-demand memory allocation, switching
to it can impact latency and differs from standard behaviour. Hence, all
resKIL benchmarks use the default (eager) memory allocation strategy.

Quantization

The effect of TensorFlow Lite’s quantization levels on model size and
run-time memory usage is close to what their operand width suggests.

Float16 TensorFlow Lite networks are about half as large as (32-bit)
TensorFlow networks, and Int8 networks are again half as large as their
Float16 counterparts. Similarly, full 8-bit integer quantization more
than halves the memory usage compared to 16-bit float quantization.
Here, the difference in memory usage is more pronounced than in
model size, likely due to integer-only applications being more compact
than code that contains floating-point operations.

As Fig. 8.4 indicates, the influence of quantization on latency is less
straightforward. For Raspberry Pi 4, Jetson Nano, and Coral EdgeTPU,
partial 8-bit quantization (Default) and full 8-bit quantization (Int8)
are on par, and faster than using 16-bit floats. For the resKIL-specific
i.MX hardware platform, full 8-bit integer quantization can be faster in
some cases. Jetson Xavier NX inference, on the other hand, works best
with Float16. Whether the quantization process has access to sample
input data or not has no discernible effect on latency.

On the accuracy side, the F1 score of Float16-quantized TensorFlow
Lite models is up to ten percentage points higher than that of Default
or Int8 variants. This is likely due to the lower dynamic range of 8-bit
integers: Float16 models use 16-bit weights and operations, whereas
all weights in Default and Int8 models are stored as 8-bit numbers.
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Figure 8.5: Latency distribution of TensorFlow (TF) and TensorFlow Lite
(TFLite) by hardware platform relative to Raspberry Pi 4. The
dashed line indicates equal performance ( t

tRPi4
= 1): samples on
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results with identical NN platform, NN architecture, quantization
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Overall, TensorFlow Lite quantization is a trade-off between accu-
racy, latency, and memory usage. Whichever method is better depends
on hardware platform, neural network architecture, optimization goals,
and use-case constraints.

Hardware Choice

Hardware selection is one of the most important aspects in the resKIL
product line. It affects the set of available inference platforms and all
performance attributes apart from model size. Moreover, it plays a
major role in product cost, and – combined with expected sales volume
and margin – influences how much money (i.e., time) is available for
AI engineering tasks. Fig. 8.5 illustrates its relevance by comparing the
inference latency of TensorFlow and TensorFlow Lite on a Raspberry
Pi 4 to other hardware platforms.

We see that Jetson Nano (TensorFlow), Jetson Xavier NX (Tensor-
Flow and TensorFlow Lite) and Coral EdgeTPU with TPU-accelerated
inference are the only hardware platforms that deliver lower latency
than a Raspberry Pi 4 for nearly all evaluated NN configurations. So,
these are almost always a better choice – but also more expensive.
Meanwhile, Coral EdgeTPU with CPU-only inference is in fact slower
than a Raspberry Pi 4.

resKIL i.MX is neither universally better nor worse – depending on
software configuration, its relative latency can be anything between
ten times lower and ten times higher. This is due to the i.MX hardware
platform’s NNAPI implementation that is meant to speed up common
TensorFlow Lite operators by providing GPU-accelerated implementa-
tions. It appears to be incompatible with several modern TensorFlow
operators, and has to fall back to CPU execution whenever a neural
network uses them.
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Considering that Raspberry Pi 4 was the most affordable platform
at the time of this evaluation (early 2022), these are notable results.
Depending on product line configuration, Raspberry Pi 4 can be far
from the least powerful platform, and as such it may be a suitable
choice for many affordable NN-based AI solutions. More expensive
hardware is not necessarily faster, at least in its default software con-
figuration. Whether switching to a more powerful hardware platform
actually improves latency also depends on neural network selection
and other software configuration attributes. There is an exception to
these observations, though: the most expensive evaluated platform
(Jetson Xavier NX) is also the most powerful one.

Summary

We have observed numerous interactions between configurable fea-
tures and performance attributes of NN-based AI software systems.
Virtually any feature, be it hardware selection, quantization settings
or batch size, affects performance attributes of neural network infer-
ence. Hence, it is worthwhile to explore the configuration space of AI
software system components before deciding on specific components
and configurations for product development.

RMT models proved to be a helpful utility for finding relationships
between product line features and performance attributes. They are in-
terpretable despite their high complexity score. All of the relationships
mentioned in this sub-section were confirmed by raw benchmark data.

We will now look into related work that deals with performance
aspects of AI software systems.

8.1.5 Related Work

Most existing approaches focus on white- rather than black-box mod-
els. For instance, Li et al. devise a white-box model for the latency of
convolutional neural networks (CNN) on GPUs of embedded NVIDIA
Jetson TX boards [Li+21]. The model can predict the often non-linear re-
lationship between convolution parameters and inference latency, but
is limited to a specific GPU. It does not consider hardware variations.

Habitat uses transfer learning to predict how GPU hardware affects
the training time of neural networks [Yu+

21]. When provided with
the training latency of a specific NN architecture on a specific GPU, a
performance model of the GPU, and a performance model of a new
GPU, it predicts the architecture’s training latency on the new GPU.
Its scope is limited to training latency and GPU hardware. It is not a
true white-box model, and – just like resKIL models – cannot predict
how changes in neural network architecture affect performance.

Oboe examines the influence of training datasets on accuracy and
latency. It uses a combination of bilinear and polynomial models that
predict NN performance based on meta-features that it extracts from
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neural network architectures and training datasets [Yan+
19]. While

the performance model deliberately focuses on interpretability, it also
does not consider hardware variations.

nn-Meter takes these into account by decomposing TensorFlow Lite-
based neural networks into hardware-specific execution units and
predicting their inference latency individually [Zha+

21]. The authors
use a non-linear prediction model and report a root mean square error
of less than 6 % for an Adreno 640 GPU. This is typical hardware for
low-power embedded devices and smartphones.

Banbury et al. examine NN performance models in the context of
TinyML: inference on microcontrollers that uses small, 8-bit integer-
quantized neural networks. They find that the type and number of
arithmetic operations in a neural network architecture is a suitable
predictor for model latency [Ban+

21]. Their MicroNets approach pre-
dicts inference latency with simple linear functions that take operation
counts as input. They also examine how the AI use case (and, as
a consequence of that, the type of NN architecture) affects the per-
formance model, and find that is an important parameter: neural
networks for image processing need a different model for predicting
latency from operation count than networks for audio processing.
So, even white-box performance prediction models must take the AI
application domain into account, and should provide domain-specific
sub-models or consider the domain as an additional input variable.

Liberis, Dudziak, and Lane note that such a simple model is not
applicable to all hardware platforms. They find that, while the number
of multiply-accumulate operations is a sensible feature for predict-
ing NN inference performance on microcontroller CPUs, neither this
metric nor the number of floating point operations are suitable when
using GPU accelerators [LDL21].

Finally, MNasNet lies outside the spectrum of white- and black-box
modeling. Instead of performance models, it uses a smartphone test-
bed for NN latency measurements to obtain guaranteed real-world
results at the cost of high round-trip times between building an NN
architecture and obtaining latency data [Tan+

19]. It is suitable for eval-
uating existing NN architectures, but not helpful for applications like
neural architecture search that rely on being able to make hundreds to
thousands of performance assessments. Due to its lack of underlying
models, it does not provide insights into hardware or NN behaviour.

Overall, we see that while there is a large body of work on white-
box AI performance models, it often focuses on individual variability
aspects such as neural network selection or hardware changes. Con-
sidering that white-box performance modeling has to handle much
higher-dimensional input data than the black-box models used in this
thesis, this is not surprising. I am not aware of related work that sup-
ports all four aspects considered by the resKIL product line: hardware
selection, software selection (inference framework and neural network
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architecture), static software configuration (model quantization), and
run-time software configuration (batch size).

8.1.6 Conclusion

This section has presented the resKIL agricultural AI product line and
examined how software and hardware configuration changes affect its
performance attributes: inference latency, inference throughput, model
size, memory usage, and accuracy.

A systematic configuration space exploration and manual inter-
pretation of the resulting RMT performance models have revealed
numerous trade-offs between these non-functional properties. For
instance, we have seen that batch processing does not improve Tensor-
Flow Lite inference throughput, while at the same time TensorFlow
Lite is faster than TensorFlow for small batch sizes. We have also
seen that some hardware platforms are consistently better or worse
than others, while for other platforms it depends on neural network
selection and software configuration.

There are two takeaways within the context of this thesis. First, the
use of product line engineering and performance modeling approaches
is not limited to pure-software or pure-hardware systems: it pays off
for hybrid product lines in the AI engineering field as well. Second,
all RMT models for the resKIL product line are interpretable despite
their high complexity score, and provide worthwhile and sufficiently
accurate insights into its feature-dependent performance attributes.

Having a formal variability model for the resKIL product line gives
access to a variety of tooling that builds upon feature models and
performance models. For instance, when passed onto a performance-
aware configuration frontend, it allows developers and product line
engineers to immediately see how exchanging or configuring individ-
ual hardware and software components would affect cost and system
performance. The next section presents such a frontend.

8.2 performance-aware product line configuration

Related publication: Birte Friesel et al. “kconfig-webconf:
Retrofitting Performance Models onto Kconfig-Based Software
Product Lines”. In: Proceedings of the 26th International Systems
and Software Product Line Conference - Volume B. SPLC ’22. Graz,
Austria: Association for Computing Machinery, Sept. 2022,
pp. 58–61. isbn: 978-1-4503-9206-8. doi: 10 . 1145 / 3503229 .

3547026 [Fri+
22a]

kconfig-webconf is a configuration frontend for Kconfig-based soft-
ware product lines and SPL-like software projects such as the Linux
kernel or the busybox multi-call binary. It allows users to load a

https://doi.org/10.1145/3503229.3547026
https://doi.org/10.1145/3503229.3547026
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Kconfig variability model and store feature configurations in .config

files, which can then be turned into concrete products by the build
system. In contrast to applications such as the Linux kernel’s Kconfig-
qconf, kconfig-webconf has native support for performance models
and can utilize them for performance-aware configuration. This way,
whenever engineers have a choice between several configurations that
fulfil the same functional requirements, they can decide which config-
uration best suits their needs based on the predicted non-functional
performance properties.

For example, developers working with resource-constrained embed-
ded devices may choose to work with simple, less efficient algorithms
rather than large libraries that are optimized for high throughput.
While the latter are faster, they may require so much ROM or RAM
that there is no space left for the applications that use them.

In the past, SPLE and performance modeling research has focused
on data-efficient benchmarks, model accuracy, and performance-aware
variability models [Guo+

18; Per+
21; Ros+

11]. Graphical frontends for
performance-aware configuration are rare; the most prominent exam-
ple that I am aware of is SPL Conqueror [Sie+

12b]. Open-source oper-
ating systems and other configurable software systems without SPLE
background typically do not use them, instead relying on command-
line switches or the Kconfig language and associated frontends for
variability modeling and configuration [EKS15]. None of these provide
native support for performance models.

Although some busybox and Linux kernel features come with in-line
annotations that document their effect on binary size or other perfor-
mance attributes, these are neither complete nor a formal performance
model, and occasionally not even correct [Ach+

22].
This lack of performance models is likely due to the high cost of

adding them to existing projects. SPLE and performance modeling re-
search projects come with their own assumptions about build systems
and configuration workflows; these are not necessarily compatible
with the way Kconfig and similar tools are used for header- and
Makefile-based feature selection in the open-source ecosystem.

I designed kconfig-webconf to minimize this cost by providing a
performance-aware drop-in replacement for an already-present Kcon-
fig frontend. Using it in an existing project can be as simple as replac-
ing a kconfig-qconf (or similar) call with kconfig-webconf. Coupled with
dfatool’s automatic generation of performance models from Kconfig
files (see Section 5.1), this enables developers to add performance
models to existing software systems with a minimal amount of work.

kconfig-webconf features include

• showing the estimated performance values of the current config-
uration,

• annotating feature toggles with their predicted effect on perfor-
mance attributes, and



162 applications

• experimental support for performance-aware resolution of fea-
ture dependencies, including Pareto optimization of selected
performance attributes.

kconfig-webconf3 and dfatool4 are available as open-source software
licensed under the terms of GNU AGPL and GNU GPL, respectively.
Sections 8.2.1 through 8.2.3 explain how kconfig-webconf enables de-
velopers to retrofit performance models onto Kconfig-based software
product lines. They are divided into concept, implementation, and
usage workflow. Section 8.2.4 presents case studies on using kconfig-
webconf with busybox and resKIL, followed by an overview over
related work in Section 8.2.5 and a conclusion in Section 8.2.6.

8.2.1 Concept

In accordance with the findings of Section 6.1, kconfig-webconf uses a
separate performance model that is not built into the feature model. It
does not require changes to existing Kconfig files, and its methods are
in fact independent from the Kconfig language. As long as individual
configurations can be transformed into feature vectors, all kconfig-
webconf concepts are applicable to any variability modeling language.

As described in Section 2.4, Kconfig supports bool, tristate, nu-
meric (hex/int) and string entries. Individual features are defined
within config blocks that contain a prompt – entries without a prompt
are not shown by configuration frontends and thus do not define
product line features. A feature can only be configured if its depen-
dencies are satisfied; otherwise it is not visible and does not have a
user-defined value.

kconfig-webconf transforms product line instances (.config files)
into feature vectors as follows. Let n be the number of distinct boolean,
tristate and numeric features (i.e., the number of corresponding config

entries in the Kconfig file). Define an n-dimensional feature vector x⃗
and associate each feature with one dimension. Map

• each bool feature i to xi ∈ {0, 1} (0 for disabled, 1 for enabled),

• each tristate feature i to xi ∈ {0, 1, 2} (0 for disabled, 1 for
module, 2 for enabled), and

• each numeric feature i to xi ∈N∪ {⊥}.
Boolean and tristate features that are not visible cannot be enabled,

hence xi = 0. Numeric features do not have a well-defined value in
that case, so xi = ⊥. In line with previous chapters, kconfig-webconf
does not consider Kconfig string entries.

Each pair of (constant) Kconfig file and (product-specific) .config
file describes a unique product. Hence, a Kconfig file, a repository of

3 https://ess.cs.uos.de/git/software/kconfig-webconf

4 https://ess.cs.uos.de/git/software/dfatool

https://ess.cs.uos.de/git/software/kconfig-webconf
https://ess.cs.uos.de/git/software/dfatool
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Figure 8.6: kconfig-webconf user interface excerpt with feature model (bot-
tom), performance attributes of current configuration (top), and
the effect of boolean feature toggles on the selected performance
attributes (right).

.config files (X = {x⃗1, . . . , x⃗n}), and corresponding machine-readable
performance measurements (Y = {y1, . . . , yn}) are sufficient for learn-
ing a performance model such as CART, RMT or XGB. Each perfor-
mance model predicts a single performance attribute such as resKIL
inference latency or Linux kernel size from a feature vector x⃗.

kconfig-webconf takes a feature model (Kconfig file) and a set of
performance models as input. Whenever a user changes a feature, it
determines the feature vector that corresponds to the new product line
configuration, passes it on to the performance models, and displays
the predicted performance attributes. It also simulates how toggling
individual features would affect product performance, and displays
the corresponding performance predictions next to each feature toggle.
These feature-specific predictions (e.g. “ROM size +50 kB” or “Latency
−1.3 ms”) allow users to make informed configuration decisions.

Fig. 8.6 shows how kconfig-webconf visualizes current performance
values and feature-specific predictions for the resKIL product line. The
user is interested in cost and throughput, so kconfig-webconf annotates
each feature with its effect on these two attributes. We immediately
see that the selected platform is already the cheapest one, and that the
only platforms that increase throughput come with a markup of more
than 400 e.

8.2.2 Implementation

kconfig-webconf is a React application with optional online capabilities.
It works on any device that provides a reasonably recent web browser,
including Windows and Linux computers, tablets, and smartphones.
It can be set up with built-in feature and performance models or work
with user-provided model files.

When used locally, kconfig-webconf can offer the current configura-
tion for download or utilize a Python helper script to directly save it as
a .config file, just like a conventional Kconfig frontend. In an online
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setup as part of a web site, it can also pass it on to an external build
service. This way, users can directly obtain a ready-to-use product (e.g.
a compiled application binary) from the configuration frontend.

Outside of user interface and boilerplate code, its implementation
has two main components: feature model handling and performance
model handling. This sub-section covers these components as well as
kconfig-webconf’s implementation-specific limitations.

Feature Model

With its ill-defined semantics, Konfig is far from an ideal choice for
a feature modeling language [EKS15]. Still, it is widely used, and
the Linux Kconfig parser and frontends effectively serve as reference
implementations: if the specification is unclear, it is best to imitate their
behaviour. This has already led to compatible frontends with different
parsers and user interfaces, such as the Python3 kconfiglib package
used by dfatool. For kconfig-webconf, Linux tooling and kconfiglib
serve as reference implementations as well.

kconfig-webconf defines KNode objects to express features (config
entries) and augments them with (conditional) dependencies, defaults,
reverse dependencies, and attributes inherited from parent nodes.

Each KNode holds a value that represents the current feature con-
figuration. This configuration may be user-specified, dependency-
induced, or a default value; a flag indicates whether it has been set by
the user. Just like in other Kconfig frontends, the KNodes form a tree
structure that kconfig-webconf builds from explicit (choice, menu, and
menuconfig blocks) and implicit (depends on) Kconfig annotations.
This menu tree is the tree structure that users see in the user interface.

kconfig-webconf does not translate Kconfig specifications into logic
formulas or extend them otherwise. While such an approach offers
interesting opportunities for feature handling and configuration space
exploration [Tar+

09; Per+
21], it is – for now – out of scope. Instead,

the goal is for kconfig-webconf to behave just like any other Kconfig
frontend, with the optional addition of performance model support.

Performance Models

kconfig-webconf loads performance models from JSON files that con-
tain a Kconfig hash, feature names, and at least one serialized per-
formance prediction model. The Kconfig hash and feature names
correspond to the feature model with which the performance mod-
els’ measurements were acquired. This allows kconfig-webconf to
ensure that user-provided Kconfig files and performance models are
compatible, and emit a warning if this is not the case.

When using dfatool, the --export-webconf switch is sufficient for
obtaining a suitable JSON file that contains serialized models for
all available performance attributes. dfatool also annotates each per-
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Figure 8.7: Data flow within kconfig-webconf: input (left: Kconfig, .config,
NFP plugins), internal data structures (middle), and output (right:
.config).

formance attribute with a user-provided description and a flag that
indicates whether minimizing or maximizing it is desirable.

Fig. 8.7 shows how Kconfig feature model and performance models
interact within kconfig-webconf. First of all, kconfig-webconf loads
performance models (NFP plugins) into NFPModel instances. The NFP-
Model class is responsible for performance prediction, i.e., taking fea-
ture vectors as input and calculating the corresponding performance
attributes. At the time of writing this thesis, it supports feature-wise
annotations (linear regression), feature-interaction models (linear re-
gression or ULS), CART, LMT, RMT, and XGB. Developers can easily
extend kconfig-webconf with additional performance model types by
adjusting the NFPModel class.

The NFPManager interfaces between user interface, feature model
(KNodes), and performance models. It holds references to all loaded
peformance models and to two versions of the Kconfig menu tree:
Menu Tree represents the current configuration, and Sim Tree is a copy
used for simulating configuration changes.

Whenever a user changes KNodes in the Menu Tree, e.g. by load-
ing a .config file or configuring a feature, kconfig-webconf updates
Current Config and triggers the NFPManager. The manager passes the
configuration to all available NFPModel instances for evaluation and
shows the predicted performance values in the user interface (Fig. 8.6,
top). It also simulates the effect of toggling each visible boolean fea-
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ture using the Sim Tree, and passes each corresponding configuration
to the performance models as well. kconfig-webconf uses the results
of these configuration simulations to annotate each boolean feature
with its predicted relative effect on the product line’s performance
attributes (Fig. 8.6, right).

Limitations

At its core, kconfig-webconf is a by-product of research towards
performance-aware product line configuration. It focuses on ways
of visualizing performance data and evaluating performance model-
ing methods by using them in real-world configuration software rather
than just comparing prediction errors. As such, kconfig-webconf does
not offer full Kconfig compatibility, and is not as polished as other
configuration frontends.

Notably, it does not support Kconfig source statements. These in-
clude additional Kconfig files and are helpful for disaggregating large
feature models into individual components. kconfig-webconf cannot
handle these statements as it does not have access to the file system.
Instead, dfatool provides a kconfig-expand-includes utility that re-
solves source statements and combines all components into a single
Kconfig file. This file is semantically equivalent, and can be used with
kconfig-webconf and any other Kconfig frontend.

Additionally, kconfig-webconf does not support the Kconfig macro
pre-processor. This is not a design limitation, but a deliberate omission
due to time constraints. Macros within Kconfig files appear to be
limited to complex software systems such as the Linux kernel; none
of the evaluation targets within this thesis use them.

8.2.3 Workflow

In order to use kconfig-webconf for performance-aware product line
configuration, an engineer first needs to obtain a suitable set of per-
formance measurements. For software product lines such as busybox,
Kratos or Multipass, dfatool provides all tools that are needed. For
hybrid product lines such as resKIL, engineers can either provide
dfatool-compatible wrapper scripts, or generate benchmark data by
themselves and feed it directly to dfatool’s model generation script.

Section 5.1 outlines how dfatool supports automated benchmarks of
Kconfig-based software product lines; the resKIL analysis in Section 8.1
only used dfatool for model generation. In either case, once benchmark
data is available, dfatool’s analyze-kconfig.py --export-webconf

model.json generates performance models and embeds them into
a JSON file for use as a kconfig-webconf NFP plugin.

kconfig-webconf provides a webconf.sh helper script that allows
it to be used as a performance-aware drop-in replacement for exist-
ing configuration frontends. So, where users previously called make
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config for configuration and make to build a product (e.g. compile
a busybox binary), they can now call make webconf and make. The
only requirements for using webconf.sh are a suitable make target
(or similar build system integration), and ensuring that feature model
(Kconfig file) and performance model (JSON file) are available at
well-defined locations.

webconf.sh starts a Python web server that serves the kconfig-
webconf application and its model files, and opens a web browser so
that users can access it. kconfig-webconf detects this environment and
uses the web server to load Kconfig, .config, and performance model
from the file system. Similarly, its “save configuration” button uses the
web server to save .config to the file system rather than offering it
for download. Thus, kconfig-webonf behaves just like a conventional
configuration frontend with added performance model support.

As a fallback mechanism, kconfig-webconf also offers manual up-
load and download of Kconfig, .config and performance model files.
In this case, there is no need for webconf.sh integration, and it does
not matter whether kconfig-webconf is served from a web site or the
local file system. While less convenient, this method allows developers
to easily evaluate kconfig-webconf and its performance model support
in arbitrary product lines, without having to add make targets or other
build system commands.

Finally, in addition to these two local applications, kconfig-webconf
also supports product line configuration and compilation as a web
service. Output of .config files is not limited to local storage: they
can also be passed to a build service which then offers a compiled
application (i.e., a ready-to-use product) for download. By serving
kconfig-webconf and all associated model files from a web site with
an integrated build service, users can configure products without ever
having to interact with make webconf, make, or similar commands.

This has two advantages. First, users no longer need to worry
about build systems and dependencies, and can even use tablets or
smartphones for configuration and build service access. Second, users
can configure products without having access to the product line’s
source code, which may be beneficial for closed-source applications.

8.2.4 Case Studies

We will now examine two case studies that utilize kconfig-webconf:
busybox, where it serves as a drop-in replacement for an already-
present Kconfig frontend, and resKIL.

Busybox

A busybox binary consists of applets that provide light-weight imple-
mentations of common UNIX applications such as ls or tar. Applets,
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(a) kconfig-qconf (b) kconfig-webconf

Figure 8.8: System logging utilities and their in-line performance annotations
in the busybox feature model. The kconfig-webconf interface
includes model-based performance annotations (red/green).

applet configuration, and cross-cutting concerns such as logging or
debugging features make up its feature model.

Many applets come with in-line annotations that indicate their
expected effect on binary size (see Fig. 8.8(a)). Some features also
provide annotations that refer to processing speed, e.g. MD5 and
SHA3 hash calculation methods that offer different “trade bytes for
speed” trade-offs. So, an important aspect of this case study is how
kconfig-webconf with its native performance model support compares
to in-line annotations such as those within the busybox feature model.

kconfig-webconf shows the predicted absolute performance at-
tributes of the current configuration and annotates each boolean fea-
ture with its estimated relative effect on system performance (see
Fig. 8.8(b)). In-line annotations only provide the latter, and users have
to calculate absolute performance attributes by hand.

Moreover, in case of busybox, the in-line performance model is
incomplete. There are no annotations for applet configuration options,
and it is not clear whether features such as “syslogd (13 kb)” describe
the effect on binary size with the applet’s default configuration or with
a configuration where all or none of syslogd’s optional sub-features are
enabled. The same applies to cross-cutting concerns such as circular
buffers or debug features that affect almost all applets.

Features that provide in-line annotations referring to processing
speed, e.g. MD5 and SHA3 hash calculation methods, suffer from the
same limitations. However, their effect is less severe: the trade-offs
involved in hash calculation method configuration likely only affect
the corresponding applet, so the local view on system performance
that they provide is sufficient.

While busybox provides most in-line size and performance annota-
tions as part of the feature name, some are only documented in the
feature description and thus easy to miss. kconfig-webconf’s perfor-
mance annotations, by contrast, follow a consistent design and can
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Figure 8.9: kconfig-webconf user interface with performance-aware depen-
dency resolution.

be enabled and disabled for each individual performance attribute.
When provided with a suitable performance model (e.g. CART, RMT),
they also respect feature interaction: when the user toggles a feature,
the performance prediction of all interacting features changes as well.
Overall, this makes kconfig-webconf’s performance model integration
more flexible, more accurate, and easier to use than in-line annotations.

Adding a make webconf target to the busybox build system takes
less than an hour. The same applies to Multipass and Kratos, with the
time requirement shrinking to about ten minutes for engineers who are
already familiar with the software system and kconfig-webconf. The
performance-aware configuration workflow does not require any addi-
tional user input, so using kconfig-webconf as a drop-in replacement
works as intended.

resKIL

In the resKIL product line, turning a configuration into a ready-to-use
product is a manual process. There is no make command or similar
that results in an application binary. Instead, feature model and perfor-
mance models are meant to aid engineers in selecting and configuring
hardware and software components for AI products.

Hence, resKIL’s performance-aware configuration setup consists of
an online kconfig-webconf build that is automatically provided with
up-to-date feature and performance models whenever new features
and/or new benchmark results become available. This way, there
is a single URL that always holds the latest available models. It en-
ables stakeholders such as resKIL project partners to make informed
decisions about the configuration space of the resKIL product line.
They can immediately see how different hardware or software choices
would impact product cost and performance.

kconfig-webconf’s guided performance-aware dependency reso-
lution also allows them to select the best configuration that satis-
fies specific requirements. For instance, if they need to switch to
an NN platform that does not support the currently selected hard-
ware, kconfig-webconf will indicate suitable hardware platforms and
their performance attributes. Fig. 8.9 shows an example where kconfig-
webconf indicates that the currently selected Raspberry Pi 4 B platform
and the Coral EdgeTPU Dev Board are not supported. Instead, the
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stakeholder has to decide between three NVIDIA Jetson variants with
different cost and throughput attributes.

When used with tree-based performance models, kconfig-webconf
also has experimental support for automatic performance-aware de-
pendency resolution. This feature is frequently requested by users of
product line configuration frontends [HXC12]. The idea is to let users
configure the part of the system they care about (i.e., the functional
requirements they need), and have the configuration frontend auto-
matically configure all remaining features while optimizing specific
performance attributes.

For instance, an AI engineer may be looking for a way of doing
image classification with a maximum latency of 20 ms while mini-
mizing hardware cost and maximizing throughput. They do not care
about the specific hardware platform and the specific NN architecture.
So, they will specify their functional requirement (“Classification”),
have kconfig-webconf determine Pareto-optimal configurations with
respect to hardware cost and throughput, and then select one of those.

While kconfig-webconf’s performance-aware dependency resolu-
tion algorithm has not been thoroughly validated yet, it already
shows that once performance-aware configuration software is avail-
able, performance-aware auto-configuration is within reach.

Finally, the resKIL case study also uncovered aspects of modeling
methods that do not become apparent from just SMAPE and related
metrics. By design, CART models always interpolate between mea-
surements that were present during model training, whereas LMT
and RMT models are capable of extrapolation. In rare cases, this can
lead to LMT and RMT models making clearly wrong predictions,
especially when queried with numeric configurations that fall outside
the training range. The most prominent examples are negative values
for latency, throughput, or model size.

While interpolation-only models are safer from this perspective,
extrapolation can be a helpful feature, particularly if the range of
numeric features used during product line configuration is not known
beforehand. It is up to product line engineers to decide which kind of
performance model is most appropriate, and whether it might make
sense to adjust extrapolating models to avoid predictions that are
obviously wrong.

8.2.5 Related Work

By themselves, performance prediction models and product line con-
figuration software are popular topics in product line research and
literature [Rab+

18]. The combination of both – i.e., performance-aware
product line configuration software – is less common.

The most prominent example that I am aware of is SPL Conqueror
[Sie+

12b]. It covers the entire life cycle from product line and per-
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formance attribute definition over data acquisition to performance-
aware configuration and product line optimization. Thanks to this
all-encompassing design, it is more powerful than the pair of dfatool
and kconfig-webconf. However, it uses a custom variability modeling
language and is therefore not suitable as a drop-in replacement for
existing configuration interfaces.

ClaferMoo and TVL utilize feature models with built-in annotations
for performance prediction [Ola+

12; Bou+
10]. While they are more

expressive than in-line annotations such as those used in the busybox
Kconfig file, separate performance models are better still in most cases
(cf. Section 6.1). Researchers have presented performance-aware con-
figuration frontends for ClaferMoo and TVL in the past, but I am not
aware of usable, up-to-date examples. These are also less flexible than
kconfig-webconf with its plugin-based performance model support.

Finally, while the VM language does not come with a user-facing
configuration frontend, its intended application is closely related to
performance models [Alf+

19]. It has native support for built-in feature
attributes, and compatible applications can use these to automatically
generate product line instances for configuration space exploration
and performance measurements. Performance-aware configuration is
out of scope.

8.2.6 Conclusion

As we have seen, given appropriate concepts and tools, performance-
aware configuration of product lines and software systems in general
is not a complex undertaking. With dfatool and kconfig-webconf, the
only requirements for retrofitting performance-aware configuration
support onto existing Kconfig-based software systems are

• three benchmark commands (make nfpkeys, make randconfig,
make nfpvalues – see Section 5.1),

• some time for unattended benchmark execution, and

• a make webconf command (or similar) that calls kconfig-webconf.

dfatool and kconfig-webconf also support hybrid product lines
such as resKIL. Here, kconfig-webconf enables stakeholders to assess
performance attributes of product line configurations and helps them
compare the non-functional properties of different configurations with
identical functional properties. They can do all of this without having
to deal with benchmarks or raw performance models.

In contrast to approaches such as SPL Conqueror and ClaferMoo
(and related utilities), kconfig-webconf separates feature model and
performance model. It utilizes feature vectors as the only interface
between the two. In principle, this allows it to be used with any kind
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of feature model from which feature vectors can be extracted, and with
any kind of performance model that takes feature vectors as input.

At the time of writing this thesis, kconfig-webconf supports ULS,
CART, LMT, RMT, and XGB models. It has been used with busy-
box, Kratos, Multipass and the resKIL AI product line, and provided
valuable insights for developers and stakeholders alike.

The next section returns to performance model generation and
analysis, but on a lower level than applications such as busybox and
resKIL: it examines data transfer between IoT devices.

8.3 data serialization formats for the internet of things

Related publication: Birte Friesel and Olaf Spinczyk. “Data Se-
rialization Formats for the Internet of Things”. In: Electronic
Communications of the EASST 80 (Sept. 2021). doi: 10.14279/
tuj.eceasst.80.1134 [FS21]

In order for a set of computers to exchange data, they have to agree
on a common communication method and data layout, and ensure
that all data transfers use this layout. The process of converting data
objects to a specific layout so that they can be sent to another party
is called serialization (or marshalling), and the transfer itself exchanges
serialized data. The inverse part – converting serialized data so that
the receiving computer can work with – is called deserialization (or
unmarshalling). Within this section, the term data processing refers to
data serialization and deserialization.

Data (de)serialization may seem like a not particularly noteworthy
aspect of wireless IoT product lines. The open-source ecosystem offers
a variety of data formats and corresponding libraries, so developers
can just pick any that provides the required functional properties.

However, when using resource-constrained low-power devices, non-
functional aspects and trade-offs between those become relevant. On
the one hand, serialized data should be compact to minimize air-
time and thus the energy spent for transmitting and receiving it. On
the other hand, data processing itself takes up CPU cycles and thus
energy. It is not clear whether engineers should focus on keeping
radio transmissions short or whether fast data processing is more
important. In addition, they have to take the ROM and RAM usage of
data processing libraries into account.

This section explores the effect of microcontroller, radio and se-
rialization library selection on the performance attributes of data
processing and transmission: latency, energy usage, ROM usage, and
RAM usage. To do so, it augments feature models with PFA-based
behaviour models that express feature-dependent run-time behaviour. It
also examines the insights that can be gained from these models and
corresponding benchmarks, such as whether specific data serialization

https://doi.org/10.14279/tuj.eceasst.80.1134
https://doi.org/10.14279/tuj.eceasst.80.1134
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formats and corresponding libraries are good (or poor) choices in
general or whether there is no single best (or worst) option.

The following three sub-sections introduce the evaluated hardware
platforms, data serialization formats, and corresponding libraries.
After an overview over related work in Section 8.3.4, Section 8.3.5
presents the behaviour model extension, its application for modeling
data processing and transfer performance, and the corresponding per-
formance models. Section 8.3.6 follows up with performance insights,
and Section 8.3.7 concludes this analysis.

8.3.1 Hardware Platforms

This evaluation uses four resource-constrained low-power hardware
platforms that are incapable of running Linux or other fully-fledged
operating systems. This is a deliberate decision: if a system has suf-
ficient energy for running an entire Linux kernel, the energy spent
on data processing is likely less relevant. The platforms range from
8- and 16-bit microcontrollers with external radio modules to a 32-bit
System-on-Chip (SoC) with built-in WLAN transceiver.

Atmel’s ATMega328P is an 8-bit microcontroller that is frequently
used in Arduino products. With 32 KiB of Flash and 2 KiB of SRAM,
it is the most resource-constrained device in the evaluation set. Code
and data are organized in a Harvard architecture with distinct address
spaces and distinct instructions for Flash and SRAM access. Here,
it runs at 16 MHz, which is close to its maximum supported clock
frequency of 20 MHz. It can execute one instruction per cycle in most
cases, with SRAM access taking two cycles. There are no caches.

Texas Instruments markets its MSP430FR5994 towards ultra-low-
power applications. The microcontroller combines a 16-bit architecture
with two 4 KiB regions of SRAM and up to 256 KiB of non-volatile
FRAM, both of which can be used for code and data. The usable
FRAM range depends on memory model and pointer sizes configured
at compile-time. FRAM reads go through a 2-way associative cache
with four 64-bit cache lines; writes are not cached. While it supports
a CPU clock of up to 16 MHz, FRAM access is limited to 8 MHz and
requires a no-operation wait cycle at higher CPU frequencies.

In this evaluation, the CPU runs at 8 MHz and uses a small memory
model with 4 KiB SRAM and 48 KiB FRAM. This avoids wait states
and allows for using an efficient 16-bit addressing mode as opposed to
20-bit addresses required for full FRAM access. So, all memory usage
and CPU cycle measurements are lower bounds for MSP430FR5994

configurations with higher CPU clock or more memory.
espressif’s ESP8266 is an IoT-focused SoC with built-in WLAN

transceiver powered by a 32-bit 80 MHz Xtensa LX106 microcontroller.
According to official datasheets, it provides applications that run
within espressif’s software framework with approximately 50 kB of
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data SRAM depending on background tasks and WLAN usage. Code
is stored on an external flash chip which typically provides 1 to
4 MiB of storage, and is coupled with a 32 KiB SRAM section serving
as instruction cache. Based on code annotations, individual program
symbols are either loaded and locked into SRAM on startup, or loaded
and optionally cached on-demand. The benchmarks in this section
load and lock all code into SRAM to achieve stable execution timings.

Finally, the 32-bit STM32F446RE microcontroller is based on ARM’s
Cortex-M architecture. It combines 512 KiB Flash for code and read-
only data with 128 KiB SRAM and supports a CPU clock of up to
180 MHz, making it by far the most powerful microcontroller in this
ensemble. Here, it runs at 168 MHz.

Two radio modules facilitate the data transfer component of this
performance analysis. The CC1200 is a highly configurable radio oper-
ating in the sub-1 GHz ISM bands (see Section 3.6.3) and coupled with
ATMega328P, MSP430FR5994, and STM32F446RE. ESP8266 modules
come with a built-in 2.4 GHz WLAN transceiver.

8.3.2 Data Formats

The data processing part of this evaluation consists of ten data formats:

• JSON (JavaScript Object Notation)5,

• UBJSON (Universal Binary JSON)6,

• BSON (Binary JSON)7,

• CBOR (Concise Binary Object Representation)8,

• MessagePack9,

• Protocol Buffers v3
10,

• Cap’n Proto11,

• Avro12,

• Thrift13, and

• XDR (eXternal Data Representation)14.

5 https://json.org/

6 https://ubjson.org/

7 https://bsonspec.org/

8 https://tools.ietf.org/html/rfc7049

9 https://github.com/msgpack/msgpack/blob/master/spec.md

10 https://protobuf.dev/programming-guides/proto3/

11 https://capnproto.org/

12 https://avro.apache.org/

13 https://github.com/apache/thrift

14 https://tools.ietf.org/html/rfc4506

https://json.org/
https://ubjson.org/
https://bsonspec.org/
https://tools.ietf.org/html/rfc7049
https://github.com/msgpack/msgpack/blob/master/spec.md
https://protobuf.dev/programming-guides/proto3/
https://capnproto.org/
https://avro.apache.org/
https://github.com/apache/thrift
https://tools.ietf.org/html/rfc4506
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JSON { " d a t a " : [ 4 2 2 3 7 1 , 2 5 7 7

7 ] , " s e n s o r " : " g p s " }

UBJSON { U 04 d a t a [ l 00 06 71 e3 I 64 b1 ] U 06 s

e n s o r S U 03 g p s }

BSON 2e 00 00 00 04 d a t a 00 13 00 00 00 10 30 00 e3 71 06

00 10 31 00 b1 64 00 00 00 02 s e n s o r 00 04 00 00

00 g p s 00 00

CBOR a2 64 d a t a 82 1a 00 06 71 e3 19 64 b1 66 s e n s

o r 63 g p s

MsgPack 82 a4 d a t a 92 ce 00 06 71 e3 cd 64 b1 a6 s e n s

o r a3 g p s

ProtoBuf 0a 06 e3 e3 19 b1 c9 01 12 03 g p s

Cap’nProto 10 05 40 02 11 05 14 11 05 22 37 e3 71 06 b1 64 07 g p s

Avro 02 18 06 g p s 04 c6 c7 33 e2 92 03 00

Thrift 0b 00 01 00 00 00 03 g p s 0f 00 02 08 00 00 00 02 00 06

71 e3 00 00 64 b1 00

XDR 00 00 56 3b 00 00 00 02 00 06 71 e3 00 00 64 b1 00 00 00 03

g p s 00

Table 8.1: Serialization example in several data formats. Each one- or two-
character group represents a single byte. Red denotes key names
or indices, green length indicators, and blue data values.

While XML and EXI (light-weight XML) are also commonly consid-
ered in related works, they are not part of this evaluation. Libraries
for these data formats tend to have memory requirements that are
unsuitable for resource-constrained embedded devices, and they are
known to perform no better than JSON and Protocol Buffers [GT11].

All evaluated formats work with objects, that is, collections of key-
value pairs with ASCII key names. Values may be strings, numbers,
lists, or nested objects. Depending on the format, keys are stored

• as ASCII strings (resulting in self-descriptive, schema-less data),

• as indices (requiring an external schema to map indices to keys
and value types, also known as schema-enabled data), or

• not at all (key and type of a value have to be inferred from its
offset in the object; this is also schema-enabled).

Schema-less data is easiest to debug and modify, whereas schema-
enabled formats are often more compact at the cost of a less human-
friendly and less flexible representation.

Support for lists of lists, lists of objects, and mixed-type lists (e.g. a
list containing both integer and string values) varies. Evaluation data
only contains objects that all data formats can handle.

Table 8.1 gives an overview of the evaluated data formats by show-
ing how they encode the object “data = [422371, 25777], sensor = gps”.
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It starts with JSON and four JSON variants, all of which encode data in
a schema-less manner. The next five data formats are schema-enabled.

Schema-Less Formats

JSON is one of the most ubiquitous data formats to date, with a
plethora of libraries available for nearly any programming language
and hardware platform. It is the only format in this evaluation that
serializes to plain ASCII rather than binary data and does not use type
or length indicators. Hence, binary payloads require Base64 encoding,
and JSON control characters such as quotation marks must be escaped
when used within key names or string values.

UBJSON is precisely what the name suggests: a binary JSON variant.
Each UBJSON object can be converted to JSON and vice versa. UBJSON
introduces type and (for strings) length annotations, thus removing
the need for escaping of control characters.

BSON, CBOR, and MessagePack provide a superset of JSON that
also supports binary data values. BSON was developed specifically
for use with the MongoDB database software and supports MongoDB-
specific data types such as dates or regular expressions; CBOR and
MessagePack focus on concise object representation. All three store
not just string lengths, but also the length of objects and lists, allowing
for fast partial deserialization when only specific keys are of interest.

CBOR and MessagePack are capable of encoding numeric values
below 24 and 16, respectively, in an especially compact manner by
storing type information and the encoded number in a single byte. For
example, MessagePack prefixes a six-element string with 0xa6, where
the first nibble (0xa0) indicates that it is a string and the second nibble
(0x06) contains its length.

All of these formats are schema-less: key names and (with the
exception of JSON) types are encoded within the serialized object.

Schema-Enabled Formats

With Google’s Protocol Buffers v3, all communication parties must share
a common protocol definition (i.e., a schema). Serialized data refer-
ences individual keys by their index in this definition, thus achieving
a more compact representation. Schema definitions are extensible in
one direction only. Engineers can add new keys and still perform bidi-
rectional communication with participants unaware of those; changing
key types or removing keys is not supported.

Cap’n Proto is essentially Protocol Buffers without explicit serializa-
tion and deserialization. It relies on automatically generated accessor
functions that always work with serialized data to provide instant
(de)serialization at the cost of increased data access latency.

Cap’n Proto is optimized for almost arbitrarily large data sets on
64-bit architectures and uses 64-bit aligned fields internally. Just like
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Protocol Buffers, its schema definitions can be extended in one di-
rection only and must be available to all communication parties. It
supports optional compression for more efficient data transfer; all
measurements here refer to Cap’n Proto with compression enabled.

Avro and Thrift focus on Remote Procedure Calls (RPC), but can also be
used for ordinary data serialization tasks. Avro expects that its schema
is either stored with serialized data or exchanged at the beginning of
an RPC session. In contrast to Protocol Buffers and Cap’n Proto, the
schema is not extensible: serialized data objects contain neither key
names nor IDs and exclusively rely on the order of serialized values
to determine key and type information. Thrift, on the other hand,
encodes field types in serialized data.

Finally, XDR is by far the oldest data format in the evaluation set,
having been specified in 1987. Like Avro, it encodes neither schema
information nor object identifiers. It simply concatenates data values
with 32-bit alignment, which in turn means that XDR is optimized for
32-bit CPUs. It is used by the Network File System (NFS).

The next sub-section presents implementations for these data se-
rialization formats, with a focus on libraries that target embedded
devices.

8.3.3 Implementations

Libraries for embedded systems often focus on a low memory footprint
in terms of both code size and run-time memory usage. However, the
lengths to which developers go to achieve this and the trade-offs they
are willing to make in the process vary. They may optimize libraries
towards specific architectures or follow a generic approach.

The intention of this data format analysis is not to explore the
maximum amount of efficiency that heavily optimized microcontroller-
specific implementations may be able to provide. Instead, it is meant to
explore the relation between processing cost and transfer cost provided
by existing libraries. Apart from the trivial-to-implement XDR, it only
uses the following publicly availale open-source implementations.

ArduinoJSON15 v6.18 is a mature and well-documented C++ JSON
implementation. It supports general-purpose and embedded systems,
with a focus on 8-bit AVR microcontrollers such as ATMega328P. All
benchmarks in this section enable the ARDUINOJSON_EMBEDDED_MODE

preprocessor macro to compile ArduinoJSON for embedded-system
usage. Note that there are no ESP8266 ArduinoJSON measurements
due to incompatibilities with the ESP8266 toolchain.

MPack16 v1.0 is a C++ MessagePack implementation with a similar
level of maturity and platform support. Embedded applications must
disable its MPACK_STDIO and MPACK_STDLIB flags. The benchmarks in

15 https://arduinojson.org/

16 https://github.com/ludocode/mpack

https://arduinojson.org/
https://github.com/ludocode/mpack
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this section also disable its dynamic node API (MPACK_NODE), which
allocates memory from the heap at run-time. Instead, they rely on
MPack’s static “expect” API.

Despite its low version number, NanoPB17 v0.4.5 also appears to be
mature and well-documented. It provides a C library for using Protocol
Buffers on 32-bit microcontrollers and other embedded systems. In
contrast to ArduinoJSON and MPack, developers do not have to
configure preprocessor options for embedded usage.

The Protocol Buffers specification demands that each key is explicitly
marked as optional or required. While this does not influence serialized
object size, it can affect serialization and deserialization cost. All results
presented here refer to protocol definitions using optional items; we
will discuss the difference to required ones later.

XDR is specified in RFC 4506 and was first documented in RFC
1014. While I am not aware of XDR libraries that target embedded
systems, the subset used here is trivial to implement18.

I did not find usable embedded implementations for UBJSON,
BSON, CBOR, Cap’n Proto, Avro, and Thrift. Hence, benchmarks
for these are limited to serialized data size measurements provided by
the ubjson, bson, cbor, avro, and thrift Python3 modules as well as the
Cap’n Proto C++ reference implementation19.

8.3.4 Related Work

It appears that most evaluations of data serialization formats on em-
bedded systems have been published in 2012 or earlier. Considering
the pace of IoT technology development, and the fact that the least
powerful device considered in these studies is an Android smartphone,
their findings do not necessarily apply to today’s devices.

First of all, Nurseitov et al. compare JSON and XML for encoding
and transmission of 20,000 to 1,000,000 Java objects on an x86 computer.
They conclude that, while JSON and XML serialization have similar
memory demands, JSON is faster than XML by more than an order of
magnitude [Nur+

09]. They do not examine deserialization.
Gil and Trezentos also compare JSON and XML, and include Proto-

col Buffers v2 in addition to those. They examine the time and energy
cost of serialization, serialized data size, and data transmission cost
when handling SMS, web history, bookmarks, and other user data on
an Android 2.1 smartphone [GT11]. All measurements assess plain
(uncompressed) and gzip-compressed serialized data.

Accounting for CPU and radio energy, they find uncompressed
Protocol Buffers to be most and uncompressed XML to be least efficient
to serialize and transmit; deserialization on a powerful server is fastest

17 https://jpa.kapsi.fi/nanopb/

18 https://ess.cs.uos.de/git/bf/xdr-eval

19 https://capnproto.org/cxx.html

https://jpa.kapsi.fi/nanopb/
https://ess.cs.uos.de/git/bf/xdr-eval
https://capnproto.org/cxx.html
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for JSON and slowest for XML. This shows that it pays off to consider
both serialization and transmission cost. Although serialization energy
is minimal for plain JSON or XML (depending on benchmark) and
transmission cost is minimal for compressed JSON, they find Protocol
Buffers to be most efficient overall.

Sumaray and Makki evaluate JSON, XML and Protocol Buffers as
well, and add Thrift to the evaluation set [SM12]. They also examine
data processing time and serialized data size on Android smartphones;
here the use case consists of objects describing books and video files.
They report that Protocol Buffers have the lowest deserialization and
second-lowest serialization time next to Thrift, both of which are two to
ten times faster than JSON and XML. Results are similar for serialized
data size, with Protocol Buffers being most compact. However, the
authors note that Protocol Buffers and Thrift are schema-enabled and
thus harder to use.

Another analysis from 2012 further extends the evaluation set with
Avro, but utilizes an x86 computer rather than a smartphone [Mae12].
Here, the evaluation looks at the effect of different libraries for the
same data format in addition to different data formats for the same
data objects. The author reports that Protocol Buffers and Avro per-
form best when it comes to data formats in general, and that results
for other libraries are partially inconclusive.

Popić et al. compare the serialized data size of JSON, BSON, Protocol
Buffers, and a proprietary binary data format in an Internet of Vehicles
application [Pop+

16]. They collect 51,690 messages in the proprietary
data format and convert them to JSON, BSON and Protocol Buffers for
evaluation. Message size ranges from hundreds of bytes to several MB;
most would not fit into the memory of the devices evaluated in this
section. Results indicate that the proprietary format gives the most
compact encoding and is closely followed by Protocol Buffers, with
JSON and BSON messages being up to one order of magnitude larger.

Finally, in an analysis of protocols and data formats for 5G core
networks, Zhang et al. compare JSON, XML, BSON, and Protocol
Buffers v3 on a powerful x86 computer [Zha+

18]. They find that the
Protocol Buffers reference library provides fastest, most compact, and
least resource-intensive data processing. Interestingly, although it is a
binary format, BSON (de)serialization is reported to be twice as slow
as JSON. XML is an order of magnitude slower than Protocol Buffers.

In summary, existing literature often finds that Protocol Buffers (v2

and v3) are the most energy-efficient data serialization format when
working with smartphones and more powerful desktop and server
computers, whereas XML is seldom a good choice. Before looking into
the energy efficiency of data serialization formats on significantly less
powerful embedded devices, we will augment feature models with
PFA-based behaviour models.
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8.3.5 Behaviour Models

Just like in Section 8.1, where we modeled the resKIL product line,
this wireless sensor node product line combines variable hardware
and software components, and has both static and run-time variability.
However, in contrast to resKIL, its run-time behaviour is so complex
that we cannot use a single RMT model per performance attribute.
For instance, data transmission energy depends not just on radio
configuration, but also on serialized data size, which in turn depends
on serialization library configuration and the data objects that are
being serialized. These data objects are workload-specific run-time
attributes rather than configurable features, and performance models
must take this fact into account.

We can tackle this challenge by augmenting the feature model with
a behaviour model that describes the product line’s feature-dependent
run-time behaviour. The literature offers a variety of formalisms for
this, such as UML state machines [HN96]. Here, we will use PFA
models. These are compatible with both feature models and RMT
performance models thanks to their common feature vector interface.

Feature vectors in a combined feature and behaviour model refer-
ence both product line features (e.g. library selection) and run-time
parameters (e.g. data rate or length). Run-time parameters may be part
of the feature model and thus allow the product line configuration to
specify default values which can be changed at run-time.

However, there are also run-time attributes that are not part of
the feature vector despite affecting system performance. For instance,
in the x264 product line in Section 2.7.2 and related works [Zha+

15;
Guo+

18; Sie+
15; Sie+

13], encoder performance depends on the input
file being encoded. Yet, the file is not part of the feature model, and
all evaluations perform measurements and performance predictions
for a single, constant input file. In our case, exchanged data objects
and their serialized counterparts have the same role.

Considering the variability in IoT workloads and corresponding
data objects, we will not work with constant data. Instead, this section
introduces opaque parameters: workload-specific run-time attributes that
are not part of the feature vector and whose effect on system behaviour
and run-time parameters must be observed by means of benchmarks.
A performance analysis can then combine performance models (e.g.
for transmit latency, which depends on serialized data size) with
benchmarks (e.g. to determine serialized data size for various data
objects) to gain performance insights with fewer benchmarks than an
approach without performance models would require.

Fig. 8.10 shows the combined feature and behaviour model for
this wireless sensor node product line. It combines three abstract
configuration-time features (Microcontroller, Library and Radio) with
three run-time parameters (dr, tp and len) and four opaque parameters
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Sensor Node

Microcontroller

ATMega328P

MSP430FR5994

ESP8266

STM32F446RE

Library

ArduinoJSON

. . .

XDR

Radio

CC1200

ESP8266

Data Rate (dr)

TX Power (tp)

IDLERX TX
startListening()

deserialize(rxdata)
↦→ rxobject

serialize(txobject) ↦→ txdata
len := length(txdata)

txDone()

configure(rate, power)
dr := rate tp := power

Figure 8.10: Feature model (top) and behaviour model (bottom) for a wireless
sensor node product line. Emphasized features in the feature
model are linked with run-time parameters in the behaviour
model. Data rate is given in kbit/s; TX power equals dBm for
ESP8266 and tp+1

2 − 18 dBm for CC1200. txobject, txdata, rxdata
and rxobject are opaque run-time parameters and not part of the
feature model. The run-time parameter len depends on txobject.

Radio?

len
dr0.37 + 80 · 1

dr + 8 · len
dr

CC1200 ESP8266

Radio?

−140 + 41.25 · tp78− 0.06 · dr + 0.16 · log(len) + 0.01 · tp2

CC1200 ESP8266

Figure 8.11: RMT models for TX latency [ms] (top) and power [mW] (bottom).
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dr

Radio?

18484 + 0.2 · log(dr)
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Figure 8.12: RMT models for RX latency [ms] (left) and power [mW] (right).
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Figure 8.13: RMT model for (de)serialize power usage [mW].

(rxdata, rxobject, txdata and txobject). The feature model includes Data
Rate (dr) and TX Power (tp) so that engineers can specify default values.
Serialized data size (len) depends on the opaque txobject parameter
and is therefore not part of the feature model.

As usual, performance models interface with the product line by
means of feature vectors. Note that there is one set of performance
models for each PFA state/transition in the behaviour model rather
than just a single set (consisting of one model for each performance at-
tribute) for the feature model. Also, in this case, we build performance
models from already-available data and use benchmarks only to de-
termine the effect of opaque parameters on product line performance.

The models for TX and RX power usage as well as TX duration
(Figures 8.11 and 8.12) rely on the CC1200 energy model presented in
Section 3.6.3 and ESP8266 datasheet values. The RX duration model
assumes that the time spent in the RX state without receiving data
is negligible e.g. due to wake-on-radio mechanisms, hence it only
depends on data rate and data size. The data processing model in
Fig. 8.13 is based on datasheet values. Note that there is no model for
serialize and deserialize latency: these depend on opaque parameters
and must be obtained from benchmarks of appropriate workloads.
The models for IDLE, startListening and txDone are not relevant here.

The next sub-section examines the energy efficiency of data seri-
alization formats by combining RMT models with benchmarks of
data processing latency and serialized data size for domain-specific
data objects, thus providing benchmark data for all observations and
parameters that depend on opaque parameters. As Protocol Buffers v3

have been available for several years by now, it does not consider v2.

8.3.6 Observations

The evaluation dataset consists of real-world JSON payloads sampled
from the public mqtt.eclipse.org IoT hub as well as objects from
the two smartphone-centric studies presented in Section 8.3.4 [Mae12;
SM12]. Each object has one to 13 key-value pairs, including lists and
sub-objects, with the smartphone study datasets providing the largest
and most text-heavy samples. Some objects underwent minor manual
adjustments to ensure compatibility with all evaluated data formats.

Benchmarks rely on a script that generates and executes Multipass
applications for each combination of hardware platform, serialization
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Figure 8.14: Serialized data size of benchmark objects. Schema-enabled data
formats are marked with a star (⋆); schema size is not included.
Bar elements represent 25th, 50th, and 75th percentile. Mean
values are denoted by the diamond symbol (♦) and also printed
on the left.

library, and data object (txobject). It uses these to measure (de)serialize
latency, serialized data size (len), text segment size, and memory usage
including run-time stack allocations. Combined with the performance
models from Figures 8.11 to 8.13, this allows for reasoning about the
energy usage of data processing and wireless data exchange.

All benchmarks are compiled with -Os -fno-rtti -fno-exceptions;
ATMega328P compilation additionally enables link-time optimizations
(-flto). We will now examine the findings for serialized data size,
data processing and transfer cost, and memory usage.

Data Size

Schema-enabled formats place key names and type information in a
separate schema that must be available to each communication party.
Once defined and distributed, the schema is constant – hence its size
is irrelevant when only looking at serialized data. Schema-less data
formats, on the other hand, encode key names and (if applicable) type
information within serialized data. With this in mind, the distribution
of serialized data size shown in Fig. 8.14 is not surprising: schema-
enabled formats are consistently more compact than schema-less ones.

Avro and Protocol Buffers provide the smallest encoding, closely
followed by XDR and Cap’n Proto. Thrift is the least compact schema-
enabled format and close to the schema-less ones. This is likely due to
its deliberate use of fixed-size identifiers as opposed to the variable
identifier sizes used by ProtoBuf, Cap’n Proto, and Avro. When it
comes to schema-less formats, CBOR and MessagePack are the most
space-efficient data formats, while JSON is least compact.

So, from a transfer cost perspective, Avro and Protocol Buffers (for
schema-less applications) as well as MessagePack and CBOR (schema-
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Figure 8.15: Clock cycles for serialization (blue, top) and deserialization (red,
bottom). ESP8266 values for ArduinoJSON are not available.

enabled) are promising candidates. These observations are in line with
findings reported in related studies [SM12; GT11].

Data Processing Latency

Fig. 8.15 shows the distribution of CPU cycles required for data se-
rialization and deserialization on each evaluated architecture. Note
that the individual plots use different X axis scales. Although absolute
cycle counts differ, especially between 8-, 16- and 32-bit architectures,
the relation between the four libraries is similar on all four platforms.

Again, the main takeaway is not surprising: thanks to its simplistic
encoding scheme, XDR is by far the fastest library on all architectures.
MPack also performs well, especially for data serialization – it is the
fastest schema-less serialization library evaluated here.

NanoPB is slightly slower than MPack, likely due to the fact that
MPack can encode and decode objects as they come in, whereas
NanoPB has to ensure schema compliance. Indeed, changing the
schema so that all keys are marked as required rather than optional
– and thus compliance checks are more costly – further decreases
NanoPB processing speed by up to 6 %.

Finally, serializing data with ArduinoJSON is consistently slower
than using any of the other three libraries, often by a factor of two or
more. This appears to be a combination of two factors. First, Arduino-
JSON has been specifically optimized for a low code footprint, which
often comes at the cost of reduced processing performance. Second,
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Figure 8.16: Energy spent on data serialization and transmission (blue, top) as
well as data reception and deserialization (red, bottom). ESP8266

values for ArduinoJSON are not available.

although ArduinoJSON is schema-less just like MPack, it serializes
to ASCII data. This is less compact and thus also takes more time to
write out. ArduinoJSON deserialization is similar to NanoPB.

Data Processing and Transfer Cost

In real-world IoT applications, data is typically serialized and then
transmitted, or received and then deserialized. Reducing the size (and
thus energy usage) of data transfers often comes with additional time
(and thus energy usage) for data processing, and vice versa.

Fig. 8.16 shows the total energy usage distribution of data exchange,
determined by combining benchmark data (see above) with RMT
models (see Figures 8.11 to 8.13). CC1200 radios are configured for
250 kbit/s at 3 dBm and ESP866 for 54 Mbit/s at 15 dBm.

We see that MSP430FR5994 and STM32F446RE behave similarly.
Both combine an efficient CPU with a CC1200 radio that has a rela-
tively high per-byte cost, so data processing essentially does not matter
and data transfer makes up the bulk of overall energy usage. Hence,
the most compact data format (Protocol Buffers) is the most energy-
efficient one on these platforms, and NanoPB’s time-intensive data
processing (see Fig. 8.15) does not matter. XDR is a close contender.

Data processing on ATMega328P is less efficient; here XDR’s sim-
plicity pays off and it slightly outperforms NanoPB when it comes
to overall energy usage. However, in all three cases, the differences
between XDR and NanoPB are minimal. While the majority of data
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objects is handled most efficiently by NanoPB on MSP430FR5994 and
STM32F446RE, and by XDR on ATMega328P, there are exceptions
where the inverse is true.

On all three platforms, MPack is less efficient than NanoPB and
XDR, and ArduinoJSON is less efficient than MPack. ArduinoJSON has
both the highest data processing cost and the least compact data of all
evaluated libraries, so this is not surprising. While MPack processing
is more efficient than NanoPB, the difference in serialized data size is
so large that this does not help.

The findings for ESP8266 energy usage confirm that spending ad-
ditional CPU cycles to reduce serialized data size is less helpful on
platforms where data processing and transfer cost are close. Here,
XDR is clearly the most efficient data format thanks to its fast data
processing. NanoPB and MPack come in second.

Considering that the absolute cost of data processing and transfer
on ESP8266 is an order of magnitude lower than on the other three
platforms, the energy impact of data format choice is less relevant here
and engineers may decide to select a format based on other factors.

Memory Usage

Finally, ROM and RAM usage decide whether a data serialization
library is a viable candidate for a specific application in the first place.

Here, benchmark data shows that XDR once more benefits from
its simplistic design. It has by far the lowest binary size footprint,
taking up just 1 to 4 KiB of space in the text segment. Its RAM usage is
also low, though not much lower (and, on ATMega328P, even slightly
higher) than that of MPack and ArduinoJSON. Considering that XDR
builds upon 32-bit values whereas ArduinoJSON and MPack do not,
the discrepancy on the 8-bit ATMega328P platform makes sense.

There is no architecture-agnostic second-best option after XDR, and
also no library that is clearly the worst choice. Instead, benchmark
results show that the CPU architecture which an embedded library is
used with can notably affect its memory utilization. XDR and Arduino-
JSON ROM usage is largely independent of the architecture, whereas
MPack and NanoPB take up more space as architectures become
less powerful on the way from STM32F446RE (32 bit) to ATMega328P
(8 bit). MPack ROM usage on ATMega328P is an exception caused by
ATMega328P being the only platform where code is compiled with
link-time optimizations enabled. NanoPB, on the other hand, does not
appear to benefit from these optimizations.

8.3.7 Conclusion

This section has used behaviour models with opaque parameters to ana-
lyze performance attributes of data exchange on wireless IoT nodes.
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Behaviour models augment feature models that express configuration-
time variability with PFA models that cover feature-dependent run-
time variability; opaque parameters refer to workload-dependent run-
time parameters that cannot be used as part of a feature vector.

The performance analysis has combined RMT models for microcon-
troller processing power, data transfer power and data transfer latency
with benchmarks of serialized data size and processing latency. It has
shown that behaviour models and opaque parameters pay off: reason-
ing about workload-dependent energy attributes of hybrid product
lines is possible without additional energy benchmarks; latency and
data size measurements suffice.

On the product line side, we have seen that platforms with rela-
tively costly data transfer benefit most from compact data. When data
transfer cost is closer to data processing cost, the decades-old XDR
format is in fact the best option thanks to its simplistic data layout.

More specifically, Protocol Buffers (as implemented by NanoPB)
and XDR are the best choice for ATMega328P, MSP430FR5994 and
STM32F446RE. On ESP8266, XDR is the clear winner. XDR also has the
lowest binary size footprint, whereas NanoPB can take up a sizeable
amount of available ROM and RAM resources. However, engineers
pay for XDR’s low footprint with an absence of extensibility and
validation features. Protocol Buffers, on the other hand, provide a
mature ecosystem of code generation and schema handling libraries
and a process for extending schemas over time.

The overall take-away for data format selection is a clear “it de-
pends”. On severely energy- and memory-constrained devices, the
simplicity and low memory footprint of XDR will likely offset its
usability deficiencies. NanoPB is a more energy-efficient and more
feature-rich option when data transfer is costly compared to data
processing. On devices that have sufficient energy to spare, the differ-
ences in energy usage between data formats are so low that developers
should focus on memory and usability aspects instead.

8.4 chapter summary

This chapter has presented three applications of performance models
for configurable software systems and hardware components.

First off, the resKIL agricultural AI product line has shown that it is
viable to combine variable software and hardware components in a
single product line. This is a diversion from related works in the area
of AI engineering, which typically focus on white-box performance
models for neural network optimization and do not utilize an SPLE
approach. We have also seen that RMT models provide valuable
insights into product line behaviour. Thanks to decision nodes that
work with categorical features and ULS-fitted formulas in tree leaves,
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resKIL models generated with the RMT learning algorithm are shallow
and interpretable even when they have a high complexity score.

Similarly, the data format analysis in the previous section has
demonstrated that combining performance models with workload-
specific benchmarks to analyze trade-offs between data processing and
data transfer cost in a wireless sensor node application can provide
developers with helpful insights. It has also shown that it pays off
to focus on more than one non-functional product line property: on
platforms such as ESP8266, the differences in energy utilization are
so low that engineers should instead consider memory footprint and
usability aspects.

In order to do so, the data format analysis has augmented feature
models with behaviour models and introduced opaque parameters.
This combination of feature models and PFA models allows for describ-
ing the variability of product lines with feature-dependent run-time
behaviour, while also taking run-time attributes that cannot be ex-
pressed as part of a feature vector into account. Moreover, it enables
engineers to reason about energy usage and other performance at-
tributes of a product line by combining RMT models with benchmarks
that do not perform additional energy measurements.

Finally, with kconfig-webconf, we have seen that performance mod-
els such as RMT can be retrofitted onto existing software systems
with minimal effort. By separating feature model and performance
model and using feature vectors as the only interface between the
two (see Section 6.1), this approach works with any configurable soft-
ware system, even if it is not developed according to SPLE principles.
kconfig-webconf has also shone light on an aspect that error metrics
alone do not capture: models that utilize methods such as least-squares
regression or ULS can extrapolate beyond performance values that
were present in training data. This can improve prediction accuracy
outside of the training range, but comes with the risk of unsuitable
performance predictions such as negative latency or size values.

Altogether, this chapter provides a positive answer to RQ4: product
line engineering and performance modeling techniques are indeed
applicable to product lines that cover soft- and hardware variability.
Morevoer, the techniques developed and presented in this thesis (i.e.,
dfatool, RMT, and kconfig-webconf) are not limited to those and, in
fact, work with nearly any configurable system regardless of whether
it follows product line engineering methods. Finally, the resKIL bench-
marks have confirmed that RMT provide accurate and interpretable
models for manual performance analysis.

This concludes the application side of product lines, performance
models, and RMT. The next chapter recapitulates the findings and con-
tributions of this thesis, and examines further research opportunities
in the intersection of SPLE, energy models, and RMT development.
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C O N C L U S I O N

The past chapters have examined performance models for embedded
software product lines, ranging all the way from data acquisition over
the interface between feature model and performance model to model
learning and model applications. After briefly summarizing each chap-
ter in Section 9.1, Section 9.2 recaps the scientific contributions within
this thesis. Section 9.3 examines their limitations and opportunities
for future research, and Section 9.4 provides closing remarks.

9.1 summary

Chapter 2 has introduced the notion of product line engineering,
software product lines, feature models, and performance models. We
have seen that textual variability modeling languages are diverse
and wide-spread, even in software projects that are not developed
according to SPLE principles. The most prominent example for the
latter is the Kconfig language, used by projects such as the Linux
kernel and busybox. When it comes to performance models, we have
seen that engineers can embed them into the feature model by means
of feature- and variant-wise annotations or use a separate model that
interfaces with the feature model by means of feature vectors. Both
approaches are common in the literature, with separate models often
relying on least-squares regression, CART, DECART, or XGB.

Chapter 3 has provided an introduction to energy models for em-
bedded peripherals and device drivers. In contrast to software prod-
uct lines, these system components have distinct states (operating
modes) and transitions between them (driver functions). Energy mod-
els take states and transitions into account in order to provide a single,
workload-independent model that can be used to estimate energy
attributes of arbitrary workloads. We have seen that there is little
research on modeling the influence of device- and driver-specific con-
figuration variables, with most approaches using static energy values
or manually specified regression templates. My ULS algorithm, which
is prior work in the context of this thesis, enables unattended learning
of regression templates for numeric configuration variables, but does
not support boolean feature toggles.

Following up on this, Chapter 4 has given a detailed motivation of
the research questions addressed in this thesis. These refer to energy
measurement automation without out-of-band synchronization sig-
nals (RQ1), the interface between variability models and performance
models (RQ2), a common machine learning algorithm for SPLE and

189
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CPS/IoT performance models (RQ3), and hybrid product lines with
software and hardware variability (RQ4). The next section covers those
and the corresponding contributions in detail.

Chapter 5 has focused on the data acquisition methods used within
this thesis. On the SPLE side, it has described automatic sampling and
data acquisition methods for Kconfig-based software product lines. On
the CPS/IoT side, and in dealing with the first research question, it has
presented a novel synchronization and drift compensation algorithm
that exclusively uses in-band signals, an on-board timer, and buffered
UART communication for synchronizing benchmark events to energy
measurements. This allows for unattended energy measurements even
in situations where conventional, out-of-band synchronization is not
feasible. An evaluation on the EnergyTrace technology embedded in
MSP430FR5994 LaunchPads has shown promising results.

Chapter 6 has examined interfaces between variability models and
performance models (RQ2) as well as the differences (and similarities)
between SPLE and CPS/IoT performance modeling approaches. It
has found that performance models should not be part of the vari-
ability model, and that performance modeling for SPL and CPS/IoT
applications has more similarities than a glance at the literature might
suggest. It has also found that, while most related works consider
exclusively boolean or exclusively numeric variability, performance
attributes depend on boolean and numeric features in both domains.

Building on top of this, Chapter 7 has introduced my Regression
Model Tree data structure and machine learning method. RMT com-
bine and extend ideas from the SPLE and CPS/IoT domains in order
to generate interpretable performance models for arbitrary software
and hardware systems such as software product lines or configurable
embedded peripherals. They do not rely on any kind of manually pro-
vided model structure. A quantitative evaluation has shown that RMT
achieve lower model error and complexity scores than CART, LMT
and XGB when it comes to hybrid and hardware-centric applications
with influential numeric features. This gives a positive answer to RQ3.

Chapter 8 has followed up with a qualitative evaluation of model
accuracy and interpretability when working with real-world product
lines. Here, we have seen that RMT models are useful for reasoning
about the effect of software and hardware changes on NN inference
performance, and for deciding on data serialization formats in wire-
less IoT applications. In addition, it has presented and analyzed the
hybrid resKIL product line that covers hardware and software vari-
ability (RQ4). It has also presented the kconfig-webconf utility for
performance-aware configuration of Kconfig-based product lines.



9.2 contributions 191

Data Acquisition
Chapter 5

Variability Models
Chapter 6

Performance Models
Chapter 7

Applications
Chapter 8

Use separate NFP models [Fri+22b];
boolean and numeric features affect
HW/SW behaviour [FS22b]

In-band signals and UART are sufficient
for benchmark synchronization [FKS21]

RMT: Interpretable models for
variable soft- and hardware without
manual annotations [FBS18; FS22c]

RMT enable reasoning about the
performance behaviour of hybrid
product lines [FS21; FS22a; Fri+22a]

RQ1

RQ2

RQ3

RQ4

Figure 9.1: Findings when answering the research questions stated in this
thesis and corresponding publications in relation to a typical
performance model generation and usage workflow.

9.2 contributions

The key contributions of this thesis revolve around its research ques-
tions; Fig. 9.1 summarizes the findings obtained from answering them.
We will now revisit the research questions outlined in Chapter 4 with
a focus on how the corresponding results contribute to the state of the
art, followed by an overview over contributed software artifacts.

RQ1: Energy Measurement Synchronization

While automated performance data acquisition for software product
lines is mostly a question of sampling strategies and appropriate
tooling (see Section 5.1), data acquisition for energy models (i.e.,
energy measurement) is more complex. Here, benchmark events such
as driver function calls must be synchronized with energy readings
so that each benchmark phase (e.g. a specific hardware state) can be
associated with the corresponding interval in the energy measurement.
Conventional synchronization approaches use out-of-band signals,
which may unavailable for a variety of reasons. Hence, RQ1 asks: are
automated and accurate CPS/IoT energy measurements feasible on
hardware that lacks suitable out-of-band synchronization methods?

To this end, Section 5.2 contributes a generic benchmark synchro-
nization and drift compensation algorithm that exclusively relies on
in-band signals and on-board timer measurements [FKS21]. All that it
needs are a means to generate energy usage spikes with a well-defined
duration and intensity for in-band synchronization (e.g. status LEDs),
a CPU timer for timing measurements, and a communication channel
such as UART. While UART communication is part of the synchroniza-
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tion algorithm, it is not used as a time-critical synchronization method,
and the algorithm deliberately delays communication to ensure that it
does not interfere with the benchmark.

Implementing the algorithm within dfatool and evaluating it on the
EnergyTrace technology embedded in TI MSP430FR5994 LaunchPads
gave a positive answer to RQ1. The algorithm works as intended and
its accuracy is mostly limited by EnergyTrace itself, with a maximum
measurement error of 53 µA and 0.95 ms.

The state of the art benefits from this in two ways. First, the syn-
chronization component shows that out-of-band synchronization is
not a strict necessity for automated energy measurements. Second, the
drift compensation component shows that it is viable to augment syn-
chronization mechanisms with automated energy behaviour analysis
to reduce timing uncertainty when more than one clock source is in-
volved. Related work that focuses on energy behaviour analysis either
does so manually [YF09], or uses it as the only synchronization source
and thus lacks a well-defined mapping to benchmark events [Che+

17].
As a positive side effect, the algorithm enables automatic generation

of energy models with low-cost off-the-shelf hardware components.

RQ2: Linking Variability Models and Performance Models

Performance models can be part of the variability model or kept sep-
arate from it. The former relies on a variability modeling language
with support for performance annotations; the latter can link any con-
figurable system whose configurations can be expressed as a feature
vector x⃗ with any performance model that provides a function f (x⃗).
Deciding on one of these two approaches is a fundamental question
that impacts all aspects of a model’s life cycle, including the annotation
process, model expressiveness and flexibility, and model maintenance.
Given the lack of a consensus on a recommended variability modeling
language or performance modeling approach in the SPLE community
[Sun+

21b], RQ2 asks: should performance models be integrated into
variability models, or should they be separate entities?

After a qualitative and quantitative evaluation, Section 6.1 found
that performance models and variability models should be separated
[Fri+22b]. This is a valuable insight for two reasons. First, while there
is no common variability modeling language in the SPLE community,
it shows that researchers need not consider performance modeling
aspects when designing or selecting variability modeling languages.
Second, when dealing with energy models for embedded peripherals
and other product line-like systems that do not come with a formal
variability model, Section 6.2 showed that benchmark data consisting
of feature vectors and corresponding measurements is sufficient for
performance model generation. So, researchers need not define a
variability model in order to reap the benefits of performance models.
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Complementing this, Sections 6.3 and 6.4 contribute the insight
that system performance depends on numeric and boolean features
independent of whether the configurable system is part of the SPLE or
the CPS/IoT domain [FS22b]. Hence, data acquisition and performance
modeling methods should always take both kinds of feature into
account, and not blindly assume that only one of them is relevant.

RQ3: Interpretable Machine Learning

At first glance, separate performance models (as recommended in
Section 6.1) pose a dilemma for model interpretability. Integrated
performance models benefit from the structure provided by the vari-
ability model: it makes them easy to interpret and thus helps users
with performance-aware system configuration. Separate performance
models, on the other hand, are black boxes of arbitrary complexity.
In general, they do not offer interpretable links between performance
model components and configurable features, and their structure does
not (or, in cases where no formal variability model is available, cannot)
rely on feature relationships expressed in the variability model.

While tree-based modeling methods such as CART provide an in-
terpretable visual representation of the effect of configurable features
on system performance, they are often complex and ill-suited for
product lines with influential numeric features. At the same time,
interpretable modeling methods from the CPS/IoT domain are un-
suitable when dealing with boolean features. Hence, RQ3 asks: can a
common machine learning algorithm for SPLE and CPS/IoT perfor-
mance models provide lower prediction error and model complexity
than conventional approaches, without requiring manually provided
domain information or model structure?

Here, my main contribution is the Regression Model Tree data struc-
ture (Section 7.3) and machine learning algorithm (Section 7.4) [FS22c].
RMT combine regression trees from the SPLE domain with unattended
least-squares regression from the CPS/IoT domain [FBS18], and ex-
tend the regression tree with non-binary splits in decision nodes for
improved interpretability. Decision nodes handle boolean and categor-
ical features, whereas leaf nodes express the effect of numeric features
by means of ULS functions.

This allows RMT to turn benchmark data into compact, yet accurate
performance models without relying on a user-provided variability
model. As Section 7.5 has shown, they excel at dealing with product
lines with influential numeric features (SPLE domain) and config-
urable hardware (CPS/IoT domain), and behave similar to existing
modeling methods when numeric features have little influence.

The take-away is that the difference between these two domains
is smaller than it seems, and that it pays off to consider approaches
from both domains rather than limiting literature reviews to just one
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of them. By doing so, RMT provide a positive answer to RQ3 and
enable practitioners to obtain interpretable performance models for
configurable systems without having to provide a variability model.

RQ4: Hybrid Product Lines

When it comes to applications used in the literature, there is a divide
between software-centric product lines with associated performance
models and hardware-centric embedded systems with associated en-
ergy models. This goes as far as SPLE methods for updating a perfor-
mance model to reflect hardware changes rather than making those
part of the variability model to begin with [Jam+

18]. At the same
time, use cases such as an agricultural AI product line or a wireless
sensor network may contain variability in both software and hardware
components. Hence, RQ4 asks: are product line engineering and per-
formance modeling techniques also applicable to product lines that
cover soft- and hardware variability?

Chapter 8 gives a positive answer to this question. The hybrid resKIL
product line (Section 8.1) follows SPLE methods, and RMT allow
for manual and tool-assisted analysis of its performance behaviour
[FS22a]. It deviates from typical approaches in the literature by using
an SPL-inspired black-box approach rather than the white-box variant
that is common in the NN performance analysis domain.

Similarly, a study on data serialization format selection in wireless
IoT sensor nodes (Section 8.3) showed that it pays off to consider vari-
ability in hardware and software components when analyzing energy
efficiency. Here, the performance analysis augments the feature model
with a PFA-based behaviour model and introduces opaque parameters
in order to deal with feature-dependent run-time behaviour.

Again, this underlines that there is considerable overlap between
the SPLE and CPS/IoT domains. SPLE researchers need not refrain
from building feature models that consider hardware variability in
addition to software components, and CPS/IoT researchers may well
build energy models that incorporate variable software components
in addition to hardware configuration and workload.

Artifacts

The findings in this thesis have been supported by four software
artifacts, all of which were developed specifically for this purpose and
all of which are publicly available under open-source licenses.

First of all, dfatool1 provides unattended benchmark data acquisi-
tion and performance model generation for configurable software
and hardware systems. It supports Kconfig-based software product
lines, embedded peripherals with text-based PFA models, and hybrid

1 https://ess.cs.uos.de/git/software/dfatool

https://ess.cs.uos.de/git/software/dfatool
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product lines. It implements synchronization and drift compensation
(RQ1), utilizes separate performance models to work with arbitrary
configurable systems without relying on variability models (RQ2),
and supports the RMT machine learning algorithm and data structure
(RQ3) in addition to CART, DECART, LMT, and XGB. In addition
to this thesis, dfatool has been used in the Bachelor’s theses of Janis
Falkenhagen, Lennart Kaiser, and Johannes Horas.

The Multipass2 library operating system works in conjunction with
dfatool to enable a variety of automated energy measurements. It
deliberately lacks multi-tasking support and directly exposes the main
function and low-level interrupt control to applications. This way,
timing and energy measurements are not affected by timer interrupts
or other unwanted sources of operating system noise. It provides
helper functions for in-band synchronization and drift compensation
(RQ1) and has been used for BME680 energy model generation, the
data serialization format analysis presented in Section 8.3, and the
Bachelor’s theses of Leon Nienhüser, Kevin Lass, and Johannes Horas.

msp430-etv3 bridges the gap between Multipass and dfatool by
providing EnergyTrace measurement automation and, if desired, visu-
alization. It supports a variety of statistical analysis methods including
changepoint detection, and has found its use in exercises and lab
courses of the Embedded Software Systems group.

Finally, the kconfig-webconf 4 utility allows engineers to retrofit per-
formance models and performance-aware configuration onto existing
Kconfig-based product lines, and also supports hybrid product lines
such as resKIL (RQ4) [Fri+

22a]. It has contributed to the success of
the resKIL project by visualizing the performance influence of feature
toggles to a variety of project partners. The student assistants Kathrin
Elmenhorst and, later, Lennart Kaiser supported its development.

9.3 limitations and future work

Naturally, the contributions presented in this thesis are not without
limitations or room for future improvements. These mainly concern
data acquisition, the RMT data structure and learning algorithm, and
performance model applications.

9.3.1 Data Acquisition

First of all, by design, automated data acquisition relies on a formal
variability model. In case of embedded peripherals, PFA models fulfil
this task. Just like SPL feature models, they are not part of the source
code, but kept in a separate file – hence, engineers must ensure con-

2 https://ess.cs.uos.de/git/bf/multipass

3 https://ess.cs.uos.de/git/software/msp430-etv

4 https://ess.cs.uos.de/git/software/kconfig-webconf

https://ess.cs.uos.de/git/bf/multipass
https://ess.cs.uos.de/git/software/msp430-etv
https://ess.cs.uos.de/git/software/kconfig-webconf
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sistency whenever they make changes to either component. This is
known to be a challenging task in SPLE [Tar+

09; Tar+
11].

However, unlike a feature model, a PFA belongs to a specific device
driver and thus to a well-defined (and typically small) set of files.
Moving the PFA model into the device driver by means of machine-
readable source code annotations would offer an opportunity to ease
the task of maintaining consistency. I have already used AspectC++
to show that this is possible in principle with custom C++ annota-
tions [FBS17], but not followed up on it.

Once an energy benchmark has been generated, my drift compensa-
tion algorithm for automating energy measurements in the absence of
out-of-band synchronization signals relies on a configurable fraction of
benchmark events coinciding with observable changes in energy usage
(see Section 5.2.5). This limitation is a design issue: the algorithm uses
changepoint detection to detect state and transition boundaries within
a series of energy readings.

Benchmark events that do not affect energy usage are not an is-
sue: precise synchronization does not matter if energy usage remains
unchanged, and users need only specify an appropriate set of interpo-
lation edges (Equation 5.3). However, energy usage spikes that are not
part of the benchmark, e.g. due to background tasks or scheduler inter-
rupts, can reduce the drift compensation algorithm’s accuracy. While
those are undesirable in general, their negative effect on benchmarks
with out-of-band synchronization signals is limited to the affected
hardware state or transition and thus slightly lower.

This thesis avoids such effects by performing energy measurements
with the Multipass library operating system, which does not have
a scheduler or other unwanted interrupt sources. Another possible
workaround is using the energy spikes caused by UART dumps of
timer data for changepoint detection-based drift compensation. While
those are delayed so as not to affect the actual energy benchmark, their
timing with respect to benchmark events is still well-known.

9.3.2 Regression Model Trees

On the modeling side, RMT have a strong focus on interpretabil-
ity, which is both their strongest asset and their biggest limitation.
RMT handle boolean and categorical features only as part of the tree
structure and numeric features only within leaf nodes; the learning
algorithm deliberately leaves out numeric features when greedily de-
ciding which feature to split on. However, as the loss function still
includes uncertainty caused by variable numeric features, the learning
algorithm cannot distinguish between variability caused by boolean
or categorical features and variability caused by numeric features. The
former can be reduced by adding another decision node, whereas the
latter mandates a ULS leaf node instead. In the latter case, adding more
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decision nodes would only increase model complexity and over-fitting
risk without providing an accuracy benefit.

Currently, the learning algorithm does not detect whether the re-
maining variable boolean and categorical features have (nearly) no
influence on the modeled performance attribute and whether it should
return a ULS leaf node instead. Instead, it follows the conventional
CART approach of continuing to add decision nodes. This is the main
reason for the sub-optimal Multipass results discussed in Section 7.5.2.

Extending the learning algorithm to discard irrelevant features
before considering split candidates may help here. A similar approach,
with a single pre-processing step before tree generation rather than a
distinct check for each tree node, has already been shown to decrease
model complexity and improve model accuracy when using regression
forests to predict Linux kernel size [Ach+

22]. Provably optimal and
interpretable sparse regression trees are also a promising source of
inspiration for improving RMT [Zha+

23] – however, these do not
support categorical or numeric features yet.

Hyper-parameter tuning (i.e., automatically limiting the tree depth)
might also reduce tree complexity in this situation. However, the whole
point of RMT is that users should not be burdened with such details,
and the algorithm deliberately does not expose hyper-parameters.

Another improvement opportunity is handling of categorical fea-
tures. Currently, a categorical decision node has one sub-tree for each
value of the corresponding feature. While this reflects the variability
model’s structure, it discards opportunities for reducing model com-
plexity and prediction error by using sub-trees for groups of values.

For instance, in resKIL, Int8- and Default-quantized neural networks
often have similar performance attributes, whereas Float16 is slightly
different (see Fig. 8.3). An RMT model with a common sub-tree for
xOpt ∈ {Default, Int8} and another sub-tree for xOpt = Float16 would
improve interpretability by encoding this behaviour. The challenge
here lies in handling the combinatorial explosion of split candidates in
the learning process, and deciding between common sub-trees (lower
complexity) and separate sub-trees (lower prediction error). LMT-style
bottom-up pruning to merge sub-trees is also worth considering.

Lastly, as the x264 performance models in Section 7.5.2 have shown,
there are cases where decision nodes that split on numeric features
significantly reduce prediction error compared to purely boolean and
categorical splits. Allowing the RMT learning algorithm to split on
numeric features in special cases would improve its performance
on product lines that contain numeric features whose performance
influence cannot adequately be described by ULS. Again, the main
challenges are split candidate handling during model generation and
maintaining an appropriate compromise between accuracy and inter-
pretability – i.e., deciding which conditions justify a tree node that
splits on a numeric feature rather than a boolean or categorical one.
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9.3.3 Applications

When it comes to application domains, I am already following up on
the examples presented in Section 8 by utilizing RMT to analyze the
performance behaviour of disruptive memory technologies [FLS23;
LFS24]. These are neither software product lines nor embedded pe-
ripherals, but similar to hybrid product lines: memory performance
depends on aspects such as operating system behaviour and software
development kits in addition to pure hardware. Moreover, here, per-
formance models also have to take resource contention into account.

The resKIL NN performance analysis in Section 8.1 has examined
neural networks as black boxes, unaware of network layers and layer
attributes. While this is useful for reasoning about the effect of hard-
ware and software configuration on performance attributes of neural
networks, their influence on individual NN layers is also interesting.
On the one hand, layer-level performance models can predict per-
formance attributes for NN architectures that were not part of the
training set [Ban+

21]. On the other hand, they allow for making op-
timization and offloading decisions at the granularity of NN layers
rather than entire networks. Applying RMT to this task would provide
interpretable models for NN layer performance and support existing
work on low-level optimizations for NN inference [FFS23].

9.4 final remarks

As we have seen, performance models for embedded software product
lines are an active research area. While there is a plethora of variability
modeling languages and performance modeling approaches to choose
from, only a subset of those is capable of dealing with complex in-
teractions between boolean and numeric features. An even smaller
subset also takes model interpretability into account.

With RMT, this thesis offers an approach for improving model
interpretability without sacrificing accuracy when dealing with hybrid
and hardware-centric product lines. By combining SPLE and CPS/IoT
approaches, RMT have shown that seemingly unrelated fields address
common challenges, and that it pays off to take inspiration from them.
Thanks to this, RMT models are not limited to product lines, but
support arbitrary configurable systems – independent of whether they
have variability in hardware, software, both, or something else entirely.

I am certain that there are more opportunities for joint modeling
efforts across different research communities, and I am curious to see
what will come of it next.
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