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The State of Runtime Performance Models

Performance
ModelSPL Configuration x⃗ Performance Attribute y

• x264 video encoder [Zha+15; Guo+18; Sie+15; Sie+13; DAS21]
– runtime flags → latency, output file size

of fixed input file
– Input file length, resolution ?

→ latency, output file size

• Database management systems systems [Guo+13; Sar+15; Nai+17; Per+21]
– Static features → latency, throughput, . . .

of fixed reference query
– Database size, query sequence ?

→ latency, throughput, . . .
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Performance Models: Workload as a Black Box

Learning
Algorithm

Configurations x⃗1, x⃗2, ⋅ ⋅ ⋅ ∈ P

Observations y1, y2, ⋅ ⋅ ⋅ ∈ R
from Reference Workload

Performance
ModelSPL Configuration x⃗ Performance Attribute y

Feature Model
Source Code

XX XX

• Workload changes → re-run benchmarks and re-build model
• Performance bottlenecks → no link to workload / source code
• Proposal: Workload-aware and interpretable performance models

→ 1 runtime variability, 2 workload model, 3 performance annotations
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1 Runtime Variability Model

SPL

Bool Feat. Num Feat.

Bool Feat. Num Feat.

• Feature model: static features only, unaware of runtime variability

• Extension of Dynamic Software Product Lines (DSPLs) [Hal+08]
– Compile-time defaults can be changed at runtime
– DSPLs: no support for runtime variability /∈ product line features
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2 Workload Model

• Example: DBMS with optional offloading engines (query accelerators)

– State machine; transitions =̂ runtime steps

or loops (consecutive queries)

– Feature guards: transitions may depend on feature configuration
– Transitions annotated with performance models (bandwidth or latency)

• Extension of featured transition systems [AFL15; Cla+13; Cla+14]

a

b c d e
f

B(op,#cores)

[CPU] runQuery
[Accel] alloc

T (#engines)

[Accel] writeData

B(#engines)

[Accel] writeQuery

B(#engines)

[Accel] runQuery

T (op,#rows,#engines)

[Accel] readResult

B(#engines)[Accel]ε
[⊤]ε
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3 Regression Model Trees

Operation

383µs
+ 0.43 ns ⋅ #rows

#engines

213µs
+ 0.54 ns ⋅ #rows

#engines

237µs
+ 0.68 ns ⋅ #rows

#engines

SELECT

COUNT

UPDATE

Regression model trees [FS22]
= regression trees [Bre+84]
+ unsupervised least-squares [FBS18]

• Accurate and interpretable
• runQuery example: linear scaling
with # accelerator engines
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Understanding Product Line Behaviour

0 5 10 15 20 25 30 35 40
0

0.1

0.2

#engines
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te

nc
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[s
]

SELECT benchmark: Accel enabled; fixed column size

runQuery

• runQuery scales linearly with #engines

• Neither minimum nor maximum are optimal
→ Why?

(explanation in the paper)
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Quantitative Evaluation

• Case study: DBMS with query accelerators
• Four models:

– CART: conventional performance model
– CART+B: 1 CART with runtime variability
– BM+CART: 1 2 behaviour model with CART annotations
– BM+RMT: 1 2 3 behaviour model with regression model trees

• Evaluation metrics:
– Latency prediction error: variable configuration and query sequences
(10-fold cross validation)

– Model complexity (# tree nodes + # regression weights)
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Evaluation Results

CART CART
+B
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⇒ Sufficient accuracy for reasoning about runtime performance

⇒ Two orders of magnitude lower complexity → interpretable models
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Conclusion

• Behaviour Models and Regression Model Trees:flexible, interpretable, workload-independent performance models

→ Understanding performance issues and bottlenecks
→ Predicting runtime performance of arbitrary workloads

• Definitions, algorithms and case study in the paper
– Case study: DBMS application on real query accelerators
– Artifacts available and functional: zenodo.org/records/15827230 [Fri25]

• Learning behaviour models from application traces:
work in progress; proof of concept to appear @ CCMCC’25 [FS25]
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