
OSNABRÜCK
UNIVERSITY

EmbeddedSoftware Systems

Understanding Product Line Runtime Performance
with Behaviour Models and Regression Model Trees

Birte Friesel, Olaf Spinczyk
September 4th, 2025
ess.cs.uos.de/∼bf birte.friesel@uos.de



The State of Runtime Performance Models

Performance
ModelSPL Configuration x⃗ Performance Attribute y

• x264 video encoder [Zha+15; Guo+18; Sie+15; Sie+13; DAS21]
– runtime flags → latency, output file size

of fixed input file
– Input file length, resolution ?

→ latency, output file size

• Database management systems systems [Guo+13; Sar+15; Nai+17; Per+21]
– Static features → latency, throughput, . . .

of fixed reference query
– Database size, query sequence ?

→ latency, throughput, . . .

birte.friesel@uos.de Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees 1



The State of Runtime Performance Models

Performance
ModelSPL Configuration x⃗ Performance Attribute y

• x264 video encoder [Zha+15; Guo+18; Sie+15; Sie+13; DAS21]
– runtime flags → latency, output file size

of fixed input file
– Input file length, resolution ?

→ latency, output file size

• Database management systems systems [Guo+13; Sar+15; Nai+17; Per+21]
– Static features → latency, throughput, . . .

of fixed reference query
– Database size, query sequence ?

→ latency, throughput, . . .

birte.friesel@uos.de Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees 1



The State of Runtime Performance Models

Performance
ModelSPL Configuration x⃗ Performance Attribute y

• x264 video encoder [Zha+15; Guo+18; Sie+15; Sie+13; DAS21]
– runtime flags → latency, output file size of fixed input file

– Input file length, resolution ?
→ latency, output file size

• Database management systems systems [Guo+13; Sar+15; Nai+17; Per+21]
– Static features → latency, throughput, . . . of fixed reference query

– Database size, query sequence ?
→ latency, throughput, . . .

birte.friesel@uos.de Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees 1



The State of Runtime Performance Models

Performance
ModelSPL Configuration x⃗ Performance Attribute y

• x264 video encoder [Zha+15; Guo+18; Sie+15; Sie+13; DAS21]
– runtime flags → latency, output file size of fixed input file
– Input file length, resolution ?

→ latency, output file size
• Database management systems systems [Guo+13; Sar+15; Nai+17; Per+21]

– Static features → latency, throughput, . . . of fixed reference query
– Database size, query sequence ?

→ latency, throughput, . . .
birte.friesel@uos.de Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees 1



Performance Models: Workload as a Black Box

Learning
Algorithm

Configurations x⃗1, x⃗2, ⋅ ⋅ ⋅ ∈ P

Observations y1, y2, ⋅ ⋅ ⋅ ∈ R
from Reference Workload

Performance
ModelSPL Configuration x⃗ Performance Attribute y

Feature Model
Source Code

XX XX

• Workload changes → re-run benchmarks and re-build model
• Performance bottlenecks → no link to workload / source code
• Proposal: Workload-aware and interpretable performance models

→ 1 runtime variability, 2 workload model, 3 performance annotations

birte.friesel@uos.de Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees 2



Performance Models: Workload as a Black Box

Learning
Algorithm

Configurations x⃗1, x⃗2, ⋅ ⋅ ⋅ ∈ P

Observations y1, y2, ⋅ ⋅ ⋅ ∈ R
from Reference Workload

Performance
ModelSPL Configuration x⃗ Performance Attribute y

Feature Model
Source Code

XX XX

• Workload changes → re-run benchmarks and re-build model
• Performance bottlenecks → no link to workload / source code
• Proposal: Workload-aware and interpretable performance models

→ 1 runtime variability, 2 workload model, 3 performance annotations

birte.friesel@uos.de Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees 2



Performance Models: Workload as a Black Box

Learning
Algorithm

Configurations x⃗1, x⃗2, ⋅ ⋅ ⋅ ∈ P

Observations y1, y2, ⋅ ⋅ ⋅ ∈ R
from Reference Workload

Performance
ModelSPL Configuration x⃗ Performance Attribute y

Feature Model
Source Code

XX

XX

• Workload changes → re-run benchmarks and re-build model
• Performance bottlenecks → no link to workload / source code
• Proposal: Workload-aware and interpretable performance models

→ 1 runtime variability, 2 workload model, 3 performance annotations

birte.friesel@uos.de Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees 2



Performance Models: Workload as a Black Box

Learning
Algorithm

Configurations x⃗1, x⃗2, ⋅ ⋅ ⋅ ∈ P

Observations y1, y2, ⋅ ⋅ ⋅ ∈ R
from Reference Workload

Performance
ModelSPL Configuration x⃗ Performance Attribute y

Feature Model
Source Code

XX

XX

• Workload changes → re-run benchmarks and re-build model
• Performance bottlenecks → no link to workload / source code

• Proposal: Workload-aware and interpretable performance models
→ 1 runtime variability, 2 workload model, 3 performance annotations

birte.friesel@uos.de Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees 2



Performance Models: Workload as a Black Box

Learning
Algorithm

Configurations x⃗1, x⃗2, ⋅ ⋅ ⋅ ∈ P

Observations y1, y2, ⋅ ⋅ ⋅ ∈ R
from Reference Workload

Performance
ModelSPL Configuration x⃗ Performance Attribute y

Feature Model
Source Code

XX XX

• Workload changes → re-run benchmarks and re-build model
• Performance bottlenecks → no link to workload / source code
• Proposal: Workload-aware and interpretable performance models

→ 1 runtime variability, 2 workload model, 3 performance annotations
birte.friesel@uos.de Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees 2



1 Runtime Variability Model

SPL

Bool Feat. Num Feat.

Bool Feat. Num Feat.

• Feature model: static features only, unaware of runtime variability

• Extension of Dynamic Software Product Lines (DSPLs) [Hal+08]
– Compile-time defaults can be changed at runtime
– DSPLs: no support for runtime variability /∈ product line features

birte.friesel@uos.de Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees 3



1 Runtime Variability Model

SPL

Bool Feat.
Num Feat.

Num Runtime

Bool Feat. Num Feat.

Bool Runtime
Bool Runtime

Bool Runtime

Bool Runtime

Bool RuntimeNum Runtime

• Feature model + runtime-only variability (e.g. input file length, table size)

• Extension of Dynamic Software Product Lines (DSPLs) [Hal+08]
– Compile-time defaults can be changed at runtime
– DSPLs: no support for runtime variability /∈ product line features

birte.friesel@uos.de Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees 3



1 Runtime Variability Model

SPL

Bool Feat.
Num Feat.

Num Runtime

Bool Feat. Num Feat.

Bool Runtime
Bool Runtime

Bool Runtime

Bool Runtime

Bool RuntimeNum Runtime

• Feature model + runtime-only variability (e.g. input file length, table size)
• Extension of Dynamic Software Product Lines (DSPLs) [Hal+08]

– Compile-time defaults can be changed at runtime
– DSPLs: no support for runtime variability /∈ product line features

birte.friesel@uos.de Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees 3



2 Workload Model

• Example: DBMS with optional offloading engines (query accelerators)

– State machine; transitions =̂ runtime steps

or loops (consecutive queries)

– Feature guards: transitions may depend on feature configuration
– Transitions annotated with performance models (bandwidth or latency)

• Extension of featured transition systems [AFL15; Cla+13; Cla+14]

a

b c d e
f

B(op,#cores)

[CPU] runQuery
[Accel] alloc

T (#engines)

[Accel] writeData

B(#engines)

[Accel] writeQuery

B(#engines)

[Accel] runQuery

T (op,#rows,#engines)

[Accel] readResult

B(#engines)[Accel]ε
[⊤]ε

birte.friesel@uos.de Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees 4



2 Workload Model

• Example: DBMS with optional offloading engines (query accelerators)

– State machine; transitions =̂ runtime steps

or loops (consecutive queries)

– Feature guards: transitions may depend on feature configuration
– Transitions annotated with performance models (bandwidth or latency)

• Extension of featured transition systems [AFL15; Cla+13; Cla+14]

a

b c d e
f

B(op,#cores)

[CPU] runQuery
[Accel] alloc

T (#engines)

[Accel] writeData

B(#engines)

[Accel] writeQuery

B(#engines)

[Accel] runQuery

T (op,#rows,#engines)

[Accel] readResult

B(#engines)[Accel]ε
[⊤]ε

birte.friesel@uos.de Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees 4



2 Workload Model

• Example: DBMS with optional offloading engines (query accelerators)

– State machine; transitions =̂ runtime steps

or loops (consecutive queries)

– Feature guards: transitions may depend on feature configuration
– Transitions annotated with performance models (bandwidth or latency)

• Extension of featured transition systems [AFL15; Cla+13; Cla+14]

a

b c d e
f

B(op,#cores)

[CPU] runQuery
[Accel] alloc

T (#engines)

[Accel] writeData

B(#engines)

[Accel] writeQuery

B(#engines)

[Accel] runQuery

T (op,#rows,#engines)

[Accel] readResult

B(#engines)[Accel]ε
[⊤]ε

birte.friesel@uos.de Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees 4



2 Workload Model

• Example: DBMS with optional offloading engines (query accelerators)
– State machine; transitions =̂ runtime steps

or loops (consecutive queries)

– Feature guards: transitions may depend on feature configuration

– Transitions annotated with performance models (bandwidth or latency)
• Extension of featured transition systems [AFL15; Cla+13; Cla+14]

a

b c d e
f

B(op,#cores)

[CPU] runQuery
[Accel] alloc

T (#engines)

[Accel] writeData

B(#engines)

[Accel] writeQuery

B(#engines)

[Accel] runQuery

T (op,#rows,#engines)

[Accel] readResult

B(#engines)[Accel]ε
[⊤]ε

birte.friesel@uos.de Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees 4



2 Workload Model

• Example: DBMS with optional offloading engines (query accelerators)
– State machine; transitions =̂ runtime steps or loops (consecutive queries)
– Feature guards: transitions may depend on feature configuration

– Transitions annotated with performance models (bandwidth or latency)
• Extension of featured transition systems [AFL15; Cla+13; Cla+14]

a

b c d e
f

B(op,#cores)

[CPU] runQuery
[Accel] alloc

T (#engines)

[Accel] writeData

B(#engines)

[Accel] writeQuery

B(#engines)

[Accel] runQuery

T (op,#rows,#engines)

[Accel] readResult

B(#engines)

[Accel]ε
[⊤]ε

birte.friesel@uos.de Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees 4



2 Workload Model

• Example: DBMS with optional offloading engines (query accelerators)
– State machine; transitions =̂ runtime steps or loops (consecutive queries)
– Feature guards: transitions may depend on feature configuration
– Transitions annotated with performance models (bandwidth or latency)

• Extension of featured transition systems [AFL15; Cla+13; Cla+14]

a

b c d e
f

B(op,#cores)
[CPU] runQuery

[Accel] alloc
T (#engines)

[Accel] writeData
B(#engines)

[Accel] writeQuery
B(#engines)

[Accel] runQuery
T (op,#rows,#engines)

[Accel] readResult
B(#engines)[Accel]ε

[⊤]ε

birte.friesel@uos.de Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees 4



2 Workload Model

• Example: DBMS with optional offloading engines (query accelerators)
– State machine; transitions =̂ runtime steps or loops (consecutive queries)
– Feature guards: transitions may depend on feature configuration
– Transitions annotated with performance models (bandwidth or latency)

• Extension of featured transition systems [AFL15; Cla+13; Cla+14]

a

b c d e
f

B(op,#cores)
[CPU] runQuery

[Accel] alloc
T (#engines)

[Accel] writeData
B(#engines)

[Accel] writeQuery
B(#engines)

[Accel] runQuery
T (op,#rows,#engines)

[Accel] readResult
B(#engines)[Accel]ε

[⊤]ε

birte.friesel@uos.de Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees 4



3 Regression Model Trees

Operation

383µs
+ 0.43 ns ⋅ #rows

#engines

213µs
+ 0.54 ns ⋅ #rows

#engines

237µs
+ 0.68 ns ⋅ #rows

#engines

SELECT

COUNT

UPDATE

Regression model trees [FS22]
= regression trees [Bre+84]
+ unsupervised least-squares [FBS18]

• Accurate and interpretable
• runQuery example: linear scaling
with # accelerator engines

birte.friesel@uos.de Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees 5



3 Regression Model Trees

Operation

383µs
+ 0.43 ns ⋅ #rows

#engines

213µs
+ 0.54 ns ⋅ #rows

#engines

237µs
+ 0.68 ns ⋅ #rows

#engines

SELECT

COUNT

UPDATE

Regression model trees [FS22]
= regression trees [Bre+84]
+ unsupervised least-squares [FBS18]

• Accurate and interpretable
• runQuery example: linear scaling
with # accelerator engines

birte.friesel@uos.de Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees 5



3 Regression Model Trees

Operation

383µs
+ 0.43 ns ⋅ #rows

#engines

213µs
+ 0.54 ns ⋅ #rows

#engines

237µs
+ 0.68 ns ⋅ #rows

#engines

SELECT

COUNT

UPDATE

Regression model trees [FS22]
= regression trees [Bre+84]
+ unsupervised least-squares [FBS18]

• Accurate and interpretable
• runQuery example: linear scaling
with # accelerator engines

birte.friesel@uos.de Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees 5



3 Regression Model Trees

Operation

383µs
+ 0.43 ns ⋅ #rows

#engines

213µs
+ 0.54 ns ⋅ #rows

#engines

237µs
+ 0.68 ns ⋅ #rows

#engines

SELECT

COUNT

UPDATE

Regression model trees [FS22]
= regression trees [Bre+84]
+ unsupervised least-squares [FBS18]

• Accurate and interpretable
• runQuery example: linear scaling
with # accelerator engines

birte.friesel@uos.de Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees 5



Understanding Product Line Behaviour

0 5 10 15 20 25 30 35 40
0

0.1

0.2

#engines

La
te

nc
y

[s
]

SELECT benchmark: Accel enabled; fixed column size

runQuery

• runQuery scales linearly with #engines

• Neither minimum nor maximum are optimal
→ Why?

(explanation in the paper)

birte.friesel@uos.de Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees 6



Understanding Product Line Behaviour

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

#engines

La
te

nc
y

[s
]

SELECT benchmark: Accel enabled; fixed column size

total (model) total (ground truth) runQuery

• Reference benchmark does not scale linearly with #engines

• Neither minimum nor maximum are optimal
→ Why?

(explanation in the paper)

birte.friesel@uos.de Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees 6



Understanding Product Line Behaviour

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

#engines

La
te

nc
y

[s
]

SELECT benchmark: Accel enabled; fixed column size

total (model) total (ground truth) runQuery

• Reference benchmark does not scale linearly with #engines
• Neither minimum nor maximum are optimal
→ Why?

(explanation in the paper)

birte.friesel@uos.de Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees 6



Understanding Product Line Behaviour

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

#engines

La
te

nc
y

[s
]

SELECT benchmark: Accel enabled; fixed column size

total (model) total (ground truth) runQuery

• Reference benchmark does not scale linearly with #engines
• Neither minimum nor maximum are optimal
→ Why? (explanation in the paper)

birte.friesel@uos.de Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees 6



Quantitative Evaluation

• Case study: DBMS with query accelerators
• Four models:

– CART: conventional performance model
– CART+B: 1 CART with runtime variability
– BM+CART: 1 2 behaviour model with CART annotations
– BM+RMT: 1 2 3 behaviour model with regression model trees

• Evaluation metrics:
– Latency prediction error: variable configuration and query sequences
(10-fold cross validation)

– Model complexity (# tree nodes + # regression weights)

birte.friesel@uos.de Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees 7



Quantitative Evaluation

• Case study: DBMS with query accelerators
• Four models:

– CART: conventional performance model
– CART+B: 1 CART with runtime variability
– BM+CART: 1 2 behaviour model with CART annotations
– BM+RMT: 1 2 3 behaviour model with regression model trees

• Evaluation metrics:
– Latency prediction error: variable configuration and query sequences
(10-fold cross validation)

– Model complexity (# tree nodes + # regression weights)
birte.friesel@uos.de Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees 7



Evaluation Results

CART CART
+B

BM
+CART

BM
+RMT

0

5

10

15
14.6

3.8 3.8

7.7

P
re
d
ic
ti
o
n
E
rr
o
r
[%

]

CART CART
+B

BM
+CART

BM
+RMT

0

2,000

4,000

2,937

4,391

2,899

22

C
o
m
p
le
x
it
y

⇒ Sufficient accuracy for reasoning about runtime performance

⇒ Two orders of magnitude lower complexity → interpretable models

birte.friesel@uos.de Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees 8



Evaluation Results

CART CART
+B

BM
+CART

BM
+RMT

0

5

10

15
14.6

3.8 3.8

7.7

P
re
d
ic
ti
o
n
E
rr
o
r
[%

]

CART CART
+B

BM
+CART

BM
+RMT

0

2,000

4,000

2,937

4,391

2,899

22

C
o
m
p
le
x
it
y

⇒ Sufficient accuracy for reasoning about runtime performance
⇒ Two orders of magnitude lower complexity → interpretable models

birte.friesel@uos.de Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees 8



Conclusion

• Behaviour Models and Regression Model Trees:flexible, interpretable, workload-independent performance models

→ Understanding performance issues and bottlenecks
→ Predicting runtime performance of arbitrary workloads

• Definitions, algorithms and case study in the paper
– Case study: DBMS application on real query accelerators
– Artifacts available and functional: zenodo.org/records/15827230 [Fri25]

• Learning behaviour models from application traces:
work in progress; proof of concept to appear @ CCMCC’25 [FS25]

birte.friesel@uos.de Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees 9

a

b d e f

g[CPU] runQuery
[Accel] alloc
[Accel] writeData [Accel] writeQuery [Accel] runQuery

[Accel] readResult
[Accel]ε

[⊤]ε

Op

⋮⋮⋮

SEL CNT
UPD



Conclusion

• Behaviour Models and Regression Model Trees:flexible, interpretable, workload-independent performance models
→ Understanding performance issues and bottlenecks
→ Predicting runtime performance of arbitrary workloads

• Definitions, algorithms and case study in the paper
– Case study: DBMS application on real query accelerators
– Artifacts available and functional: zenodo.org/records/15827230 [Fri25]

• Learning behaviour models from application traces:
work in progress; proof of concept to appear @ CCMCC’25 [FS25]

birte.friesel@uos.de Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees 9

a

b d e f

g
B(op,#cores)

[CPU] runQuery
[Accel] alloc
T (#engines)

[Accel] writeData
B(#engines)

[Accel] writeQuery
B(#engines)

[Accel] runQuery
T (op,#rows,#engines)

[Accel] readResult
B(#engines)[Accel]ε

[⊤]ε



Conclusion

• Behaviour Models and Regression Model Trees:flexible, interpretable, workload-independent performance models
→ Understanding performance issues and bottlenecks
→ Predicting runtime performance of arbitrary workloads

• Definitions, algorithms and case study in the paper
– Case study: DBMS application on real query accelerators
– Artifacts available and functional: zenodo.org/records/15827230 [Fri25]

• Learning behaviour models from application traces:
work in progress; proof of concept to appear @ CCMCC’25 [FS25]

birte.friesel@uos.de Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees 9



Conclusion

• Behaviour Models and Regression Model Trees:flexible, interpretable, workload-independent performance models
→ Understanding performance issues and bottlenecks
→ Predicting runtime performance of arbitrary workloads

• Definitions, algorithms and case study in the paper
– Case study: DBMS application on real query accelerators
– Artifacts available and functional: zenodo.org/records/15827230 [Fri25]

• Learning behaviour models from application traces:
work in progress; proof of concept to appear @ CCMCC’25 [FS25]

birte.friesel@uos.de Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees 9



References i

[AFL15] Joanne M. Atlee, Uli Fahrenberg, and Axel Legay. “Measuring
Behaviour Interactions between Product-Line Features”. In:
Proceedings of the 3rd FME Workshop on Formal Methods in Software

Engineering. FormaliSE ’15. Florence, Italy: IEEE, May 2015, pp. 20–25. DOI:
10.1109/FormaliSE.2015.11.

[Bre+84] Leo Breiman et al. Classification and Regression Trees. 1st ed.
Routledge, 1984. ISBN: 978-1-3151-3947-0. DOI: 10.1201/9781315139470.

[Cla+13] Andreas Classen et al. “Featured Transition Systems:
Foundations for Verifying Variability-Intensive Systems and
Their Application to LTL Model Checking”. In: IEEE Transactions on

Software Engineering 39.8 (2013), pp. 1069–1089. DOI:
10.1109/TSE.2012.86.

https://doi.org/10.1109/FormaliSE.2015.11
https://doi.org/10.1201/9781315139470
https://doi.org/10.1109/TSE.2012.86


References ii

[Cla+14] Andreas Classen et al. “Formal semantics, modular
specification, and symbolic verification of product-line
behaviour”. In: Science of Computer Programming 80.PB (Feb. 2014),
pp. 416–439. ISSN: 0167-6423. DOI: 10.5555/2748144.2748397.

[DAS21] Johannes Dorn, Sven Apel, and Norbert Siegmund. “Mastering
Uncertainty in Performance Estimations of Configurable
Software Systems”. In: Proceedings of the 35th IEEE/ACM International

Conference on Automated Software Engineering. ASE ’20. Melbourne,
Australia: Association for Computing Machinery, Sept. 2021, pp. 684–696.
ISBN: 978-1-4503-6768-4. DOI: 10.1145/3324884.3416620.

https://doi.org/10.5555/2748144.2748397
https://doi.org/10.1145/3324884.3416620


References iii

[FBS18] Birte Friesel, Markus Buschhoff, and Olaf Spinczyk.
“Parameter-Aware Energy Models for Embedded-System
Peripherals”. In: Proceedings of the 13th International Symposium on

Industrial Embedded Systems. SIES ’18. Graz, Austria: IEEE, June 2018. DOI:
10.1109/SIES.2018.8442096.

[Fri25] Birte Friesel. Understanding Product Line Runtime Performance
with Behaviour Models and Regression Model Trees (Artefact).
2025. DOI: https://doi.org/10.5281/zenodo.15827230.

https://doi.org/10.1109/SIES.2018.8442096
https://doi.org/https://doi.org/10.5281/zenodo.15827230


References iv

[FS22] Birte Friesel and Olaf Spinczyk. “Regression Model Trees:
Compact Energy Models for Complex IoT Devices”. In: Proceedings

of the Workshop on Benchmarking Cyber-Physical Systems and Internet of

Things. CPS-IoTBench ’22. Milan, Italy: IEEE, May 2022, pp. 1–6. DOI:
10.1109/CPS-IoTBench56135.2022.00007.

[FS25] Birte Friesel and Olaf Spinczyk. “Overhead Prediction for
PIM-Enabled Applications with Performance-Aware Behaviour
Models”. In: Proceedings of the 1st IEEE Cross-disciplinary Conference on

Memory-Centric Computing. CCMCC ’25. to appear. Dresden, Germany, Oct.
2025.

https://doi.org/10.1109/CPS-IoTBench56135.2022.00007


References v

[Guo+13] Jianmei Guo et al. “Variability-Aware Performance Prediction: A
Statistical Learning Approach”. In: Proceedings of the 28th IEEE/ACM

International Conference on Automated Software Engineering. ASE ’13. IEEE,
2013, pp. 301–311. DOI: 10.1109/ASE.2013.6693089.

[Guo+18] Jianmei Guo et al. “Data-Efficient Performance Learning for
Configurable Systems”. In: Empirical Software Engineering 23.3 (June
2018), pp. 1826–1867. ISSN: 1382-3256. DOI:
10.1007/s10664-017-9573-6.

[Hal+08] Svein Hallsteinsen et al. “Dynamic Software Product Lines”. In:
Computer 41.4 (2008), pp. 93–95. DOI: 10.1109/MC.2008.123.

https://doi.org/10.1109/ASE.2013.6693089
https://doi.org/10.1007/s10664-017-9573-6
https://doi.org/10.1109/MC.2008.123


References vi

[Nai+17] Vivek Nair et al. “Using bad learners to find good
configurations”. In: Proceedings of the 2017 11th Joint Meeting on

Foundations of Software Engineering. ESEC/FSE 2017. Paderborn, Germany:
Association for Computing Machinery, 2017, pp. 257–267. ISBN:
9781450351058. DOI: 10.1145/3106237.3106238.

[Per+21] Juliana Alves Pereira et al. “Learning software configuration
spaces: A systematic literature review”. In: Journal of Systems and

Software 182 (2021), p. 111044. ISSN: 0164-1212. DOI:
https://doi.org/10.1016/j.jss.2021.111044. URL: https:
//www.sciencedirect.com/science/article/pii/S0164121221001412.

https://doi.org/10.1145/3106237.3106238
https://doi.org/https://doi.org/10.1016/j.jss.2021.111044
https://www.sciencedirect.com/science/article/pii/S0164121221001412
https://www.sciencedirect.com/science/article/pii/S0164121221001412


References vii

[Sar+15] Atrisha Sarkar et al. “Cost-Efficient Sampling for Performance
Prediction of Configurable Systems”. In: Proceedings of the 30th

IEEE/ACM International Conference on Automated Software Engineering (ASE).
ASE ’15. IEEE, 2015, pp. 342–352. DOI: 10.1109/ASE.2015.45.

[Sie+13] Norbert Siegmund et al. “Scalable prediction of non-functional
properties in software product lines: Footprint and memory
consumption”. In: Information and Software Technology 55.3 (Mar. 2013),
pp. 491–507. ISSN: 0950-5849. DOI: 10.1016/j.infsof.2012.07.020.

https://doi.org/10.1109/ASE.2015.45
https://doi.org/10.1016/j.infsof.2012.07.020


References viii

[Sie+15] Norbert Siegmund et al. “Performance-Influence Models for
Highly Configurable Systems”. In: Proceedings of the 10th Joint

Meeting on Foundations of Software Engineering. ESEC/FSE ’15. Bergamo,
Italy: Association for Computing Machinery, Aug. 2015, pp. 284–294.
ISBN: 978-1-4503-3675-8. DOI: 10.1145/2786805.2786845.

[Zha+15] Yi Zhang et al. “Performance Prediction of Configurable
Software Systems by Fourier Learning”. In: Proceedings of the 30th

IEEE/ACM International Conference on Automated Software Engineering. ASE
’15. Lincoln, NE, USA: IEEE, Nov. 2015, pp. 365–373. DOI:
10.1109/ASE.2015.15.

https://doi.org/10.1145/2786805.2786845
https://doi.org/10.1109/ASE.2015.15

	References

