

On the Relation of Variability Modeling Languages and Non-Functional Properties

Birte Friesel, Michael Müller, Matheus Ferraz, Olaf Spinczyk September 13. 2022 birte.friesel@uos.de

Universität Osnabrück / Arbeitsgruppe Eingebettete Softwaresysteme

Variability Modeling Languages

Option

(16) Batch Size

- Hardware Platform
 - Coral EdgeTPU Dev Board
 - o i.MX EVK
 - Jetson Nano
 - Jetson Xavier NX
 - Raspberry Pi 4 B (aarch64)
- NN Framework
- Task (NEW)
- NN Architecture
- ▶ TFLite Optimizations (NEW)

Variability models \rightarrow interactive software product line configuration

Non-Functional Properties

Configuration	Cost: 60 € Inference Time: 532 ms
Memory Footprint: 122 MB Model Size: 4	4 MB Throughput: 32.1 FPS
Batch Size 16 > Hardware Platform NN Framework	hw_platform
Task (NEW) NN Architecture Quantization (NEW)	Coral EdgeTPU Dev Board ☐ +100 € -12.4 FPS i.MX EVK ☐ +440 € +88.5 FPS Jetson Nano ☐ +57 € -1.2 FPS Jetson Xavier NX ☐ +420 € +14.2 FPS Raspberry Pi 4 B (aarch64) ☑

Non-functional property (NFP) models \rightarrow performance-aware configuration

On the Relation of ...

How to add non-functional properties to a variability model?

Contents

1 Approaches

3 Evaluation

Approaches

Integrated NFP Model

Separate NFP Model

- NFPs are attributes of individual features
- Aggregation functions define NFP of the complete product

- NFPs are attributes of individual features
- Aggregation functions define NFP of the complete product

E.g. ClaferMoo [Ola+12]

EdgeTPU : HWFeature [cost = 160]
RasPi4 : HWFeature [cost = 60]
Battery : HWFeature [cost = 50]

totalCost : integer [totalCost = sum HWFeature.cost]

- NFPs are attributes of individual features
- Aggregation functions define NFP of the complete product

```
E.g. TVL [Bou+10]
```

```
EdgeTPU {int cost is 160;}
RasPi4 {int cost is 60;}
Battery {int cost is 50;}
```

EdgeML {int cost is sum(selectedChildren.cost)}

- NFPs are attributes of individual features
- Aggregation functions define NFP of the complete product

```
E.g. UVL [Sun+21]
```

```
EdgeTPU {cost 160}
RasPi4 {cost 60}
Battery {cost 50}
```


- **Feature vector** \vec{x} describes product configuration
- Calculate NFP y using separate model function $f: \vec{x} \mapsto y$

Separate NFP Model

- **Feature vector** \vec{x} describes product configuration
- Calculate NFP y using separate model function $f : \vec{x} \mapsto y$

E.g.
$$\vec{x} = (x_{HW}, x_{Bat}) \in \{\{EdgeTPU, RasPi4\}, \{0, 1\}\}$$

$$cost(\vec{x}) = 50 \cdot x_{Bat} + \begin{cases} 160 & x_{HW} = EdgeTPU \\ 60 & x_{HW} = RasPi4 \end{cases}$$

Arbitrary functions can be used, e.g. regression trees or neural networks

Approaches

Integrated NFP Model

Separate NFP Model

Should NFP models be part of the variability model?

Contents

2 Analysis

3 Evaluation

Analysis

Maintenance Modularity

Annotation Process

- Manual annotation
- Benchmarks → model training

Separate NFP Model

- Manual annotation
- Benchmarks \rightarrow model training

Annotation Process

Integrated NFP Model

- ✓ Manual annotation
- (√) Benchmarks → model training
 size = sum feat.size
 * (debug ? 1.2 : 1)

- (✓) Manual annotation
- ✓ Benchmarks → model training
 E.g. CART, XGBoost, neural networks

Annotation Process

- ✓ Manual annotation
- (√) Benchmarks → model training
 size = sum feat.size
 * (debug ? 1.2 : 1)

- (✓) Manual annotation
- ✓ Benchmarks → model training
 E.g. CART, XGBoost, neural networks

Expressiveness

Integrated NFP Model

- · Defined by modeling language
- Typically limited to
 - feature-wise annotations
 - feature interaction
 - aggregate functions

- · Chosen as suitable
- Near arbitrary, e.g.
 - feature-wise annotations
 - regression trees
 - neural networks

Expressiveness

Integrated NFP Model

- Defined by modeling language
- Typically limited to
 - feature-wise annotations
 - feature interaction
 - aggregate functions

- · Near arbitrary, e.g.
 - feature-wise annotations
 - regression trees
 - neural networks

DB		Debug	Safety
_	172 kB	+ 45 kB	+ 18 kB
Multi	+ 20 kB		
WAL	+ 32 kB		

DB		Debug	Safety
_	172 kB	+ 45 kB	+ 18 kB
Multi	+ 20 kB	+ 3 kB	+ 11 kB
WAL	+ 32 kB	+ 4 kB	+ 0 kB

DB		Debug	Safety
_	172 kB	+ 45 kB	+ 18 kB
Multi	+ 20 kB	+ 3 kB	+ 11 kB
WAL	+ 32 kB	+ 4 kB	+ 0 kB

- Handled in variability modeling languages by feature interaction [Sie+12]
 - Check each feature pair *A*, *B* for interaction (domain expert or benchmarks)
 - If yes: add feature AB with $AB \Leftrightarrow A \land B$ to variability model
 - E.g.: (Multi, Debug) = 3 kB; (Multi, Safety) = 11 kB; (WAL, Debug) = 4 kB
 - Can be extended for more complex interactions (e.g. ABCD)

DB		Debug	Safety
_	172 kB	+ 45 kB	+ 18 kB
Multi	+ 20 kB	+ 3 kB	+ 11 kB
WAL	+ 32 kB	+ 4 kB	+ 0 kB

- Handled in variability modeling languages by feature interaction [Sie+12]
 - Check each feature pair *A*, *B* for interaction (domain expert or benchmarks)
 - If yes: add feature AB with AB ⇔ $A \land B$ to variability model
 - E.g.: (Multi, Debug) = 3 kB; (Multi, Safety) = 11 kB; (WAL, Debug) = 4 kB
 - Can be extended for more complex interactions (e.g. *ABCD*)

Complexity

Separate NFP Model

 Feature-wise annotations: simple → easy to understand

- Depends on model type
- XGBoost, NN: hard to grasp

Complexity

- Feature-wise annotations: simple → easy to understand
- Feature interactions clutter the model

- Depends on model type
- XGBoost, NN: hard to grasp
- Regression model trees: Expressive and understandable [FS22]

Maintenance and Modularity

Integrated NFP Model

- Method defined by variability modeling language
- No separation of concerns:
 NFP attributes become useless after implementation changes

- Method can be changed at will
- Implementation change → new NFP model or transfer learning [Jam+18]

Maintenance and Modularity

Integrated NFP Model

- Method defined by variability modeling language
- No separation of concerns:
 NFP attributes become useless after implementation changes

- Method can be changed at will
- Implementation change → new NFP model or transfer learning [Jam+18]

Comparison

Separate NFP Model

- Annotation by domain expert
- Clear feature
 ↔ NFP relation
- cross-cutting concerns present → inaccurate or complex

- Automated generation
- · Separation of concerns
- Arbitrary model complexity
 - → problem-specific approaches

Contents

1 Approaches

- 2 Analysis
- 3 Evaluation

4 Conclusion

Evaluation Setup

- Integrated model: Feature-wise annotations (FW) $\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_n x_n$
- Separate model: Classification and Regression Trees (CART) [Bre+84]
 Go-to approach for data-efficient NFP model generation [Guo+18]
- Six product lines:
 - busybox multi-call binary → Binary size
 - Kratos, Multipass, MxKernel research OSes → ROM usage
 - resKIL embedded AI product line → accuracy, latency, throughput, memory
 - x264 video codec → encoding duration and file size

Model Error (10-fold cross validation)

Advantages of External Models

- Decision tree structure naturally captures dependencies between features
- → Higher model accuracy

Advantages of External Models

- Decision tree structure naturally captures dependencies between features
- → Higher model accuracy

Influential features located close to the root.

Contents

1 Approaches

2 Analysis

3 Evaluation

4 Conclusion

Conclusion

Separate NFP Model

- Opinion: variability models should **not** incorporate NFP-related concerns
- Instead:
 - Formalize configurations / products as feature vectors
 - Use configuration tool to link variability and NFP models

References i

- [Bou+10] Quentin Boucher et al. "Introducing TVL, a text-based feature modelling language". In: Proceedings of the Fourth International Workshop on Variability Modelling of Software-intensive Systems (VaMoS'10). 2010, pp. 159–162.
- [Bre+84] Leo Breiman et al. Classification and regression trees. Routledge, 1984. DOI: 10.1201/9781315139470.
- [FS22] Birte Friesel and Olaf Spinczyk. "Regression Model Trees:

 Compact Energy Models for Complex IoT Devices". In: Proceedings of the Workshop on Benchmarking Cyber-Physical Systems and Internet of Things. CPS-IoTBench '22. IEEE, May 2022, pp. 1–6. DOI: 10.1109/CPS-IoTBench56135.2022.00007. URL: https://ess.cs.uos.de/static/videos/cpsiotbench22-Friesel-RMT.mp4.

References ii

- [Guo+18] Jianmei Guo et al. "Data-Efficient Performance Learning for Configurable Systems". In: Empirical Softw. Engg. 23.3 (June 2018), pp. 1826–1867. ISSN: 1382-3256. DOI: 10.1007/s10664-017-9573-6. URL: https://doi.org/10.1007/s10664-017-9573-6.
- [Jam+18] Pooyan Jamshidi et al. "Learning to Sample: Exploiting Similarities across Environments to Learn Performance Models for Configurable Systems". In: Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. ESEC/FSE 2018. Lake Buena Vista, FL, USA: Association for Computing Machinery, 2018, pp. 71–82. ISBN: 9781450355735. DOI: 10.1145/3236024.3236074. URL: https://doi.org/10.1145/3236024.3236074.

References iii

[Ola+12] Rafael Olaechea et al. "Modelling and Multi-Objective Optimization of Quality Attributes in Variability-Rich

Software". In: Proceedings of the Fourth International Workshop on

Nonfunctional System Properties in Domain Specific Modeling Languages.

NFPinDSML '12. New York, NY, USA: Association for Computing

Machinery, 2012. ISBN: 978-1-4503-1807-5. DOI:

10.1145/2420942.2420944. URL:

https://doi.org/10.1145/2420942.2420944.

[Sie+12] Norbert Siegmund et al. "Predicting performance via automated feature-interaction detection". In: 2012 34th
International Conference on Software Engineering (ICSE). 2012, pp. 167–177.
DOI: 10.1109/ICSE.2012.6227196.

References iv

[Sun+21] Chico Sundermann et al. "Yet Another Textual Variability Language? A Community Effort towards a Unified Language".

In: Proceedings of the 25th ACM International Systems and Software Product Line Conference - Volume A. New York, NY, USA: Association for Computing Machinery, 2021, pp. 136–147. ISBN: 9781450384698. URL: https://doi.org/10.1145/3461001.3471145.