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Abstract

Over the past decade, various systems and software libraries
have been developed that provide crash consistency on byte-
addressable persistent memory. They often require program-
mers to adapt their code significantly or to use special com-
piler plugins. Constant innovation in this evolving field
makes it desirable to be able to easily switch to more re-
cent systems without massive code refactoring, and without
changing compilers.

In this paper, we show how aspect-oriented programming
can be used to automatically apply crash consistency to
normal, sparsely annotated C++ code. In two case studies,
we find that our approach significantly reduces the amount
of code required to apply state-of-the-art crash consistency
frameworks such as PMDK libpmemobj++ and Pronto.

1 Introduction

Byte-addressable persistent memory (PMem) has been shown
to provide new opportunities and challenges for software de-
velopment. For example, programmers have to consider crash
consistency [13, 16], that is, ensuring that application data
can be recovered correctly in case of system failure. While
there are numerous systems, libraries, and custom data struc-
tures that aim to solve this problem, they often affect the
code massively. For example, the code in Figure 1 shows a
crash-consistent C++ class written with libpmemobj++ from
Intel’s Persistent Memory Development Kit (PMDK) [8]. A
comparison with the corresponding regular C++ code in Fig-
ure 2 reveals that there are several additional library calls for
persistent allocations, explicitly defined transactions, and
even the types of data members have to be wrapped.
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Table 1. Code changes needed for persistence frameworks

Framework Types Wrappers Annotations Transactions
libpmemobj++ v — - v
Pronto® — v v -
NVMReconstruct? — - v N/A
Romulus v — - v

“Uses a preprocessor. bUses a Clang compiler plugin.

With the evolution of PMem frameworks, it is desirable to
decouple the application logic from the framework-specific
code. In this paper we propose an aspect-oriented [10] ap-
proach that uses the AspectC++ language [18] to separate the
regular C++ source code from the PMem framework. PMem-
specific source code can be encapsulated in generic aspect
modules that can be reused for multiple data structures and
even for different programs. Our main contributions are:

e An analysis of common patterns found in PMem soft-
ware shows massive code tangling (Section 2).

e Two small case studies with PMDK libpmemobj++
transactions (Section 3) and Pronto [14] (Section 4)
demonstrate that our approach almost eliminates the
need for boilerplate code.

e We show that our approach does not introduce persis-
tence bugs and has no unreasonable effects on perfor-
mance (Section 5).

2 Code Impact of Persistence Frameworks

This section presents an overview of the programming effort
required for using several well-known PMem frameworks.
The main findings are summarized in Table 1.

PMDK libpmemobj++. Intel’s Persistent Memory Devel-
opment Kit (PMDK) [8] is a collection of libraries for persis-
tent memory. Libpmemobj provides a low-level C interface
to PMem pools, undo-logging, and transactions. In addition,
libpmemobj++ offers C++ template bindings for wrapping
the members of data structures to automatically take a snap-
shot on write access. Pointers to persistent objects are stored
as smart pointers instead of regular pointers, so that mem-
ory pools can be moved. Persistent objects are allocated and
deallocated using special functions. All writes to persistent
objects and all (de-)allocation operations have to be either
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e I
1| class snake {
2 persistent_ptr<element_list> snake_segments;
3 p<point> last_seg_position;
4 p<direction> last_seg_dir;
5| public: // ...
6 void add_segment () {
7 auto pop = pool_by_vptr(this);
8 transaction::run(pop, [&]1{
9 persistent_ptr<element_shape> shape =
10 make_persistent<element_shape >(SNAKE_SEGMENT);
11 persistent_ptr<board_element> segp =
12 make_persistent<board_element >(
13 last_seg_position, shape, last_seg_dir);
14 snake_segments->push_back (segp);
15 IDEEB N

Figure 1. Panaconda with PMDK

enclosed by calls to library functions that implement a trans-
action or have to be passed to such a library function as a
lambda. In summary, the approach is invasive. A program-
mer has to wrap every single member of a persistent data
structure and has to define transactions explicitly. As the
wrapper does not work on compound types, data structures
might have to be decomposed using persistent pointers.

Pronto. Crash consistency in Pronto [14] is implemented
by snapshots of the volatile program state in PMem. Between
snapshots, it uses asynchronous semantic logging: A back-
ground thread logs the address and parameters of each public
function call. After a crash, the calls can be replayed.

To create a persistent class, a wrapper class that aggregates
the original type and inherits from a special base class is
needed. It has to forward all public non-const methods of
the aggregated type and informs the background thread. In
addition, a custom memory allocator has to be used, and
Pronto provides such an allocator that can be plugged into
the containers of the C++ Standard Template Library (STL).
Pronto requires a custom preprocessor to generate further
methods for the wrapper classes, such as a custom operator
new(), and a method to replay the log after a crash.

NVMReconstruct. NVMReconstruct [2] neither provides
a persistent memory allocator nor a transaction mechanism
and relies on external components implementing that func-
tionality. It manages a persistent heap with objects that use
regular pointers. Because the heap can be mapped into the
applications’ address space at different locations in each pro-
gram run, the heap has to be reconstructed on startup: All
pointers to persistent objects and member functions have to
be fixed, and pointers to volatile data have to be reinitialized.

Data structures have to be annotated for reconstruction:
Volatile pointers are annotated as transient, and a special
reconstructor method can be defined that runs during
the reconstruction phase. Persistent instances of annotated
classes are allocated with pnew and deleted with pdelete,
while new and delete are still available for creating volatile
instances.

Marcel Képpen, Birte Friesel, Christoph Borchert, and Olaf Spinczyk

The new language features are implemented in a Clang
compiler plugin that also collects metadata for the recon-
struction phase. For example, the locations of all pointers
have to be available for relocation and reinitialization.

Romulus. Romulus [3] is a library that uses two copies of
the data to implement durable transactions on PMem. During
a transaction, data are written to the primary copy, while a
shadow copy remains untouched. Once the transaction ends,
the shadow copy is updated from the primary data according
to a volatile redo log that identifies the changed locations.

Application code has to wrap transactions in a pair of func-
tions for single-threaded code, and in a lambda function as
argument to read_transaction or update_transaction
for multi-threaded code. Romulus provides custom functions
to allocate and free persistent objects. Those objects have to
be added and removed to/from the persistent store explic-
itly. Similar to libpmemobj++, Romulus requires members of
persistent objects to be wrapped for intercepting all writes.

Summary. These examples show four recurring patterns
that are key elements of the APIs of persistence libraries:

1. Programmers must use special allocation and dealloca-
tion functions to create and destroy persistent objects.

2. Classes, methods, or members of persistent objects
have to be wrapped to make write operations inter-
ceptable or to provide hooks for the framework.

3. Classes or members have to be annotated to be able to
discriminate between volatile and persistent objects.

4. Transactions have to be introduced explicitly.

The following sections show how the amount of code
required to make regular data structures persistent can be
reduced using Aspect-Oriented Programming (AOP) [10].

3 Aspect-Oriented PMDK

The code in Figure 1 shows an adapted excerpt from the
example program Panaconda, which ships with libpmem-
obj++. As described in the previous section, all members
of the class snake are wrapped: Instead of using a regular
pointer, snake_segments is of the type persistent_ptr
(line 2), and the types of the members last_seg_position
and last_seg_dir are wrapped as well (lines 3-4). Lines 8-
15 implement one transaction around two allocations of
persistent objects.

In contrast, Figure 2 shows the corresponding regular C++
code for this example program. We will discuss the user-
defined attribute [[NVM: : pmdk]] in the following sections
and will show that this is the only annotation needed to
make the data structure persistent using two generic and
fully reusable aspects written in AspectC++ [18].

3.1 Transactions and Undo-Logging

To implement crash consistency of persistent data structures
with PMDK, all write operations and (de-)allocations have
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1| class [[NVM::pmdk]] snake { )
2 element_list *snake_segments;
3 point last_seg_position;
4 direction last_seg_dir;
5| public: // ...
6 void add_segment () {
7 element_shape *shape =
8 new element_shape (SNAKE_SEGMENT);
9 board_element *segp =
10 new board_element(last_seg_position,
11 shape, last_seg_dir);
12 snake_segments ->push_back(segp);
13 i3
J

Figure 2. Panaconda with aspect-oriented approach

e I
1 | aspect PMDKTransactions {
2 pointcut transaction() = NVM::pmdk()
3 && !"% ...::%(...) const";
4 pointcut regular_members() = NVM::pmdk()
5 && !"%* ...::%" && !"static % ...::%";
[ advice execution(transaction()) : around() {
7 if (tx_running()) { tjp->proceed(); return; }
8 auto pop = pool_by_vptr(tjp->target());
9 transaction::run(pop, [&]{ tjp->proceed(); 1});
10 }
11 advice set(regular_members()) : before() {
12 transaction::snapshot(tjp->entity());
13 3N

Figure 3. Transaction aspect

to be run in transactions, and updated variables have to be
logged. We assume that public methods of a class preserve
class invariants according to the principles of object-oriented
design, so that public non-const methods represent transac-
tions (c. f. [12, 14]).

Figure 3 shows the implementation using AspectC++ to
ensure that any non-const method of any annotated class is
run as a transaction: We first define a pointcut transaction
that represents all non-const methods of classes annotated
with [[NVM: :pmdk]]. The piece of advice in lines 6-9 inter-
cepts the execution of such methods. If there is already a
transaction running, there is nothing to do and the inter-
cepted method can be executed via t jp->proceed() on the
existing transaction (line 7). Else, the advice code looks up
the memory pool in which the target object of the method
is stored (line 8). Then a new transaction is started that exe-
cutes the intercepted method in line 9.

Now that methods run in transactions, we need to save
members to the undo log before write access. For regular
(non-pointer) members, the implementation is straight for-
ward: We first define a pointcut for the members that need
to be logged in line 4. It contains all members in annotated
classes that do not have a pointer type and that are not static.
The set advice in line 11 is executed before any write access
and takes a snapshot of the corresponding member.
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3.2 Pointers

Pointers need to be handled differently. Because persistent
objects can reside in different memory pools, pointers in
libpmemobj++ contain the identifier of the memory pool
and the offset to the pool’s start address, requiring twice the
storage of regular C++ pointers.

As the current version of AspectC++ can only add new
members to a class, but not replace existing members, we can-
not use the fat pointers of the PMDK. Therefore, our imple-
mentation uses libpmemobj++’s experimental self-relative
persistent pointers that store the byte offset relative to their
own address. Such pointers occupy the same space as regular
C++ pointers, so that both regular and self-relative point-
ers can be translated transparently into each other without
changing the object layout.

Figure 4 shows the pointer translation implemented as a
reusable aspect. For using a regular pointer as a self-relative
pointer, an instance of the class self_relative_ptr has to
be created in the original pointer’s memory. This is done by
using the placement new operator on the pointer’s address.

The template metaprogram SRPLifetime referenced in
line 4 (not shown in this paper) uses the JoinPoint Template
Library (JPTL) [1] and the compile-time introspection infor-
mation provided by AspectC++ to iterate over all members
and generate the functions srp_init() and spr_destruct
() (lines 5-6) that construct and destruct a self-relative
pointer in every pointer-type member. These methods are
generated for all annotated classes, added to them using a
class slice (line 3), and called before the constructor runs in
a construction advice (line 8) and after the destructor in a
destruction advice (line 9).

With the self-relative pointers in place, we can now trans-
late reads and writes to pointers. The set advice in line 10
replaces the writes by the advice body that determines the
type of the self-relative pointer that corresponds to the orig-
inal pointer type given by JoinPoint: :Entity. The value
that the application assigns to the pointer is available in *t jp
->arg<0>() and is used to construct a self-relative pointer.
Finally, the member is interpreted as a self-relative pointer
and assigned its new value.

Reads from pointers are handled similarly as shown in the
get advice in line 14: The member’s memory is interpreted
as a self-relative pointer and we return the corresponding
regular pointer via *tjp->result().

3.3 Allocation of Persistent Objects

Persistent objects in libpmemobj++ are created and deleted
using special functions during a transaction. The same func-
tionality can be achieved with custom new and delete op-
erators. These operators are introduced transparently into
annotated classes by a slice introduction using AspectC++
to implement the functionality of make_persistent and
delete_persistent from the PMDK.
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1 | aspect PMDKPointers {
2 pointcut pointer_members() = NVM::pmdk() && "%* ...::%" && !"static % ...::%"
3 advice NVM::pmdk() : slice class {
4 using SRPLifetime = JPTL::MemberIterator<JoinPoint, SRPLifetimes>::EXEC::SRPLifetime;
5 void srp_init() { SRPLifetime::srp_init(this); }
6 void srp_destruct() { SRPLifetime::srp_destruct(this); 3}
7 }s
8 advice construction(NVM::pmdk()) : before() { tjp->target()->srp_init(); } // Construct self_relative_ptrs
9 advice destruction(NVM::pmdk()) : after() { tjp->target()->srp_destruct(); } // Destruct self_relative_ptrs
10 advice set(pointer_members()) : around() {
11 using PTR = self_relative_ptr<std::remove_pointer_t<JoinPoint::Entity>>;
12 *reinterpret_cast<PTR*>(tjp->entity()) = PTR(*tjp->arg<0>());
13 3
14 advice get(pointer_members()) : around() {
15 using PTR = self_relative_ptr<std::remove_pointer_t<JoinPoint::Entity>>;
16 *tjp->result() = reinterpret_cast<PTRx>(tjp->entity())->get();
17 3N
- J

Figure 4. Pointer aspect that transparently transforms pointer members into self-relative PMDK pointers

3.4 Limitations

In addition to the limitations of PMDK!, we currently do not
support transactions that acquire locks. The PMDK supports
acquiring locks at the beginning of a transaction, but they
have to be specified in the call to transaction::run(...).
A current limitation of the self-relative pointers is that they
can only point to objects in the same memory pool.

4 Aspect-Oriented Pronto

This section presents a prototypical aspect-oriented imple-
mentation of the Pronto [14] preprocessor?®. Although Pronto
uses a custom preprocessor, there is still some boilerplate
code that a programmer has to write. Figure 5 shows a wrap-
per required for an STL vector<char=*> as presented in the
Pronto paper [14]. The wrapper has to be derived from the
class PersistentObject (line 1) and needs to define a con-
structor that forwards an object identifier to the constructor
of that base class (line 3) and allocates the wrapped vector
instance. Every method has to be forwarded, and non-const
methods such as push_back() in line 6 have to be enclosed
by calls to op_begin() and op_commit().

Figure 6 shows the code required for the same task with
our aspect-oriented prototype. We still need a wrapper class
that inherits from PersistentObject, but no methods have
to be defined at all. The class derives from vector, so that all
of its methods are available. By annotating the class with the
attribute [[AOPronto: :persist]]inline 1, AspectC++ gen-
erates the code needed by the Pronto runtime automatically.
This wrapper can be adapted to different STL containers by
replacing "vector" with the desired container class.

The original Pronto preprocessor generates several fac-
tory methods that are used by Pronto’s runtime to generate
instances of the wrapped type. This way Pronto ensures that

10Objects need to be trivially copyable, so they can be stored in the undo log.
2 According to Pronto’s authors the original preprocessor and its source code
are lost. We thus had to deduce its functionality from the output available
in the Pronto artifact archive [15]. Our prototype is therefore limited, but
able to successfully run the vector benchmark from said archive.

1| struct PersistableVector : public PersistentObject {
2 typedef char * T;

3 PersistableVector (uuid_t id): PersistentObject(id){
4 v_vector = new vector<T, STLAlloc<T>>;

5 }

6 void push_back(T value) {

7 op_begin();

8 v_vector->push_back(value);

9 op_commit();

10 3

11 size_t size() const { return v_vector->size(); }
12 | private:

13 vector<T, STLAlloc<T>> xv_vector;

14| 3};

Figure 5. Persistable vector using the Pronto API

1| struct [[AOPronto::persist]]

2 | PersistableVector : public PersistentObject,
3 public vector<char #*, STLAlloc<char =*>>
4 | { typedef char * wrappedType;};

Figure 6. Persistable vector with AspectC++ Pronto support

new instances are allocated using Pronto’s custom memory
allocator, are assigned a unique object identifier, and can
be recovered from snapshots in case of a crash. The factory
methods and two constructors are also inserted into anno-
tated classes using AspectC++ (not shown in this paper).

Pronto’s log can be filled using the AC: : Action structure
that AspectC++ uses to execute the original code replaced
by around advice. In advice code, it encapsulates the context
information needed to execute the original program code at
the current join point [18], including pointers to arguments
and the function. For Pronto’s log, the actual arguments
have to be copied into memory managed by Pronto and the
argument pointers in the AC: : Action structure have to be
adjusted.

Figure 7 shows a simplified excerpt of the aspect that im-
plements the logging feature. The piece of call advice in
lines 1-7 notifies the background logging-thread on method
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1| advice call(/*...*/8&8&"% ...::%()"): around() {
2 Savitar_thread_notify (3, tjp->target(),
3 1, &(tjp->action()));
4 tjp->proceed();
5 Savitar_thread_wait(tjp->target(),
6 tjp->target()->log);
713
8 | advice persistentClass() : slice class {
9 /...
10 size_t Play(uint64_t tag,
11 uint64_t xargs, bool dry) {
12 /...
13 AC::Action * action = (AC::Action *)args;
14 | /*...Unpack arguments, fill action->_args...x/
15 if (!dry) {
16 Savitar_thread_notify (2, this, 1);
17 action->trigger();
18 Savitar_thread_wait(this, this->log);
19 3}
20 /7. ..
21 12N
- )

Figure 7. Simplified excerpt from the Pronto aspect using
AC::Action for logging and replaying of method calls

call. For brevity, we assume that the method has no argu-
ments, so that a pointer to the AC: : Action instance returned
from tjp->action() can be used without modifications.
After the original method has been executed using tjp->
proceed(), the advice code waits for the background thread
to complete its log entry.

When the log is replayed, Pronto calls the method Play
(lines 10-21). It finds the logged AC: : Action instance at the
start of the argument buffer args. If there were arguments,
they would have to be extracted from args and linked in the
array action->_args to rebuild the AC: :Action structure.
Finally, the method can be replayed by calling action->
trigger(), again logged to make this replay crash-safe.

We currently use the parameter tag to store the argument
count. If this parameter was combined with AC: :Action
in Pronto’s log, logging performance could be improved as
shown in Subsection 5.2, but this would require a change to
Pronto’s runtime.

5 Evaluation

In this section, we evaluate our aspects for PMDK and Pronto.?

5.1 PMDK

For the evaluation?, we converted the PMDK example pro-
gram Panaconda to regular C++ code. Panaconda is an im-
plementation of the game Snake that stores its state in a

3All measurements were carried out on a Dell PowerEdge R740 server with
2x Intel Xeon Gold 5218 CPU running at 2.3 GHz, 384 GiB DRAM (12x32
GiB DDR4-2666), and 1.5TiB Intel Optane Persistent Memory 100 Series
(12x128 GiB) with HyperThreading and TurboBoost both disabled. We used
one region of 6 interleaved DCPMMs on socket 0 in AppDirect mode with
EXT4 mounted with =0 daXx. The server ran Debian Bullseye with Debian
kernel 5.10.46-3.

“We used PMDK 1.11.0 and libpmemobj++ 1.13.0 compiled from source,
AspectC++ 2.3 (Debian 2.3-4), and GCC 10.2.1 with flags -DNDEBUG -02.
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Figure 8. Simplified UML class diagram of Panaconda
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persistent memory pool. Figure 8 shows a simplified UML
class diagram of the program, in which all classes except
game use persistent memory. For instance, the class tem-
plate 1ist implements a doubly linked data structure that
dynamically allocates and deletes persistent objects.

We instantiated that class template explicitly for the type
board_element, because AspectC++ does not support weav-
ing in class templates, yet. Thus, we could apply our aspect-
oriented approach to all classes that use persistent memory
as depicted in Figure 8.

Correctness. To make sure that we do not introduce con-
sistency bugs, we ran pmemcheck from the PMDK, PMDe-
bugger [5], and Intel Inspector [9] on both implementations
of Panaconda. We started each game on a fresh pool, let the
snake run into a wall and then quit the game.

For the original implementation from the PMDK, Intel
Inspector reported 104 errors: 103 times "Store without undo
log", and one time "Undo log without update". No errors were
reported for the aspect-oriented implementation.

Framework-specific lines of source code. To quantify
the effect of our approach on the direct use of libpmemobj++
in the source code, we counted the lines of code that directly
use parts of the framework in the original version of Pana-
conda and in our aspect-oriented version, and the total lines
of code excluding comments and empty lines. In the original
code, we found libpmemobj++-specific code in 146 out of
1,104 lines (13.22 %), in the aspect-oriented version in 28 out
of 1,091 lines (2.57 %).

The remaining 28 lines deal with loading and setting up
the persistent memory pool and cannot be automated easily.

Performance. We compare the execution time of differ-
ent push and pop operations on the doubly linked list that
was used in the Panaconda example® to a version of the list
that has been augmented with our aspects, and a variant
of the original list that uses self_relative_ptr instead of
persistent_ptr.

SWe extended the list implementation by a destructor that deletes all list
entries, we changed deleting entries, so that the values contained in list
entries are not deleted when a list entry is deleted, and we fixed a leak of a
deleted list_entry in the pop_back method.
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Figure 9. Execution time of list benchmarks (1000 elements)

The benchmarks for both PMDK and aspects operate on
a memory pool of 1 GiB size that is initialized with 100000
objects of a point class with random coordinate values. An
array in the pool stores persistent pointers to these objects
so that they can be used for all benchmarks.

We evaluated the following scenarios of iterated opera-
tions for N = 10, 100, 1000, 10000, and 100000 elements: Push
all elements with a transaction inside the loop (PushOne-
AtATime), push all elements in a method defined on the list
(PushAllMethod), and push all elements in a method defined
on the list, then pop all elements in another method defined
on the list (PushAllPopAllMethods). We ran each benchmark
20 times and deleted the linked list after each run of a single
benchmark.

Figure 9 shows the execution time of the different bench-
marks on the original list (PMDK), the list with self-relative
pointers (PMDK-SRP), and the list using AspectC++ (As-
pects) for 1000 elements. All list versions show a comparable
performance, with the SRP version slightly better than the
PMDK version. The Aspects version performs slightly better
for all benchmarks but PushOneAtATime. For more than
1000 elements, the median execution time for the Aspects
version is up to 3.2 % slower than the PMDK version for Push-
OneAtATime, and almost identical to the PMDK version for
the other benchmarks.

5.2 Pronto

We ran the existing vector benchmark available from the
Pronto artifact archive version 1.1 [15] using the GCC 7.5.0
compiler. In the original benchmark, the authors compare the
average latency of insertions into a volatile STL vector and
a wrapped vector that is persisted by Pronto (manual). We
added two vectors to that benchmark: the aspect-augmented
version of the vector (AspectC++), and a vector that uses AC
: :Action without a leading log entry for a tag (AspectC++,
optimized).

The results of the benchmark are shown in Figure 10. For
the manual Pronto benchmark, we can reproduce the results
presented in Figure 7 of the original paper. The latency for the
AspectC++ version of the vector is about 1 ps larger than for
the manual Pronto version, while the optimized AspectC++
version performs similar to the manual Pronto version.
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Figure 10. Pronto benchmark

6 Related Work

In addition to using software frameworks as analyzed in
Section 2, different approaches to handle persistent data
have been discussed.

Coy et al. [4] and Elkhouly et al. [6] propose to extend
compilers with special pragma statements to apply check-
pointing in parts of the code. This approach uses annotations
to introduce persistence into programs, but switching to an-
other framework would require a compiler change.

Other researchers suggest extensions of languages by per-
sistence concepts: Kolli et al. [11] propose an extended C++
memory model, Cohen et al. [2] add keywords to C++ to
discriminate between volatile and persistent data, and go-
pmem [7] extends the Go language by a persistent heap.
While persistence-aware languages enable optimizations by
the compiler, they limit flexibility for programmers to change
persistence methods in different parts of the code, which our
approach does allow.

AOP has been used to apply transactions to annotated
code by Riegel et al. [17] in Java and Koppen et al. [12]
using AspectC++. The latter approach builds a tailored data-
structure to apply cache-line transactions on PMem [19],
underlining the flexibility of a solution based on AspectC++.

7 Conclusion

AOP and the syntax of AspectC++ might at first appear diffi-
cult and complex. However, using user-defined attributes, the
integrated introspection API, and template metaprograms
are common AspectC++ idioms. No new language elements
had to be introduced for our two examples.

The power of the approach lies in the ability to separate
the technical details of a persistence framework from the
application logic without the need for special-purpose pre-
processors or compiler/language extensions. The separation
allows developers to use ordinary classes for persistent ob-
jects, to evolve the code more easily, and to change the per-
sistence framework if necessary.

The minimal performance degradation that we measured
has no fundamental reasons. We hope that it can be avoided
completely by fine-tuning our aspects or improving the code
patterns generated by the aspect weaver in the near future.
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