Understanding Product Line Runtime Performance
with Behaviour Models and Regression Model Trees

Birte Friesel
birte.friesel@uos.de
Universitat Osnabriick
Osnabriick, Germany

Abstract

Performance models for software product lines encode the relation
between configurable product features and performance attributes.
These cover both static attributes such as binary size, and runtime-
specific attributes such as throughput or latency. However, although
runtime-specific attributes depend on workload and application
behaviour, existing approaches typically only predict a single per-
formance value for each attribute and product line configuration.
They utilize fixed reference workloads for model learning and per-
formance prediction, and are therefore inadequate for predicting
feature-dependent runtime performance attributes of variable work-
loads (e.g., variable query sequences in a database management
system). Moreover, viewing a product line as a black box that is only
described by its feature model hinders efficient benchmark data ac-
quisition and reasoning about unexpected performance effects. We
propose to make performance models aware of software product
line implementations, thus improving flexibility, interpretability,
and learning time. To do so, we decompose runtime behaviour into
distinct events (state machine transitions), and annotate each event
with an event-specific performance model (regression model tree).
The combination of state machine-based behaviour models with
regression model trees allows us to predict performance attributes
of arbitrary event sequences (words accepted by the state machine).
In addition to more flexible models that are no longer bound to a
specific workload, this approach improves model interpretability
and learning time by using smaller models for individual work-
load components. We show the advantages of this approach in a
database management system product line case study, and use it to
explain unexpected behaviour on a real-world server system.

CCS Concepts

« Software and its engineering — Software performance; Op-
erational analysis.

Keywords

Runtime Performance, Performance Models, Behaviour Models,
Non-Functional Properties, Dynamic Software Product Lines

ACM Reference Format:

Birte Friesel and Olaf Spinczyk. 2025. Understanding Product Line Runtime
Performance with Behaviour Models and Regression Model Trees. In 29th
ACM International Systems and Software Product Line Conference - Volume A

This work is licensed under a Creative Commons Attribution 4.0 International License.
SPLC-A ’25, A Corufia, Spain

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2024-6/2025/09

https://doi.org/10.1145/3744915.3748472

Olaf Spinczyk
olaf@uos.de
Universitat Osnabriick
Osnabriick, Germany

(SPLC-A °25), September 1-5, 2025, A Corunia, Spain. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3744915.3748472

1 Introduction

The past two decades have seen a growing interest in performance
attributes (also known as non-functional properties) of software
product lines (SPLs), and performance models that are capable
of predicting them for arbitrary product line configurations [1, 3,
9, 37, 41, 44, 46]. Performance models allow SPL users to reason
about performance attributes without having to run configuration-
specific benchmarks, and to assess how individual product line
features affect product performance [2, 22, 35].

So far, the focus has been on building accurate performance
models from benchmark data, preferably without resorting to an
exhaustive configuration space exploration [38]. However, there is
little research on understanding why certain features have a specific
performance influence. Performance modelling treats product line
runtime behaviour as a black box whose performance attributes are
only known thanks to benchmark results, and furthermore utilizes
fixed reference workloads for model learning. So, SPL engineers and
users can neither explain which feature-dependent runtime compo-
nents of a product line are causing certain performance effects, nor
how SPL performance would fare with different workloads (e.g.,
analytical rather than transactional database queries).

Consider a database management system (DBMS) product line. In
addition to typical DBMS tunables, it provides optional support for
offloading query kernels to processing-in-memory (PIM) modules:
DRAM modules with built-in data processing units (DPUs) that can
process data independent of the CPU. Such modules are commer-
cially available from UPMEM [27], and have sparked considerable
interest within the database community [5-7, 30].

DBMS features include PIM support and the default number
of CPU cores and PIM memory modules (ranks) used for query
processing, and a performance model predicts how DBMS configu-
ration influences the latency of a reference benchmark. The model
relies on classification and regression trees (CART) [11], which are
commonly used in the product line engineering community [38].

Now, the engineers observe an unexpected relation between
features and predicted system performance. When using PIM and
varying the number of ranks allocated to running their reference
queries, they find that the optimal number of ranks is neither the
minimum nor the maximum that is available in the system. More-
over, the sweet spot depends on the column size used for the bench-
mark runs from which the performance model is generated, and
updating the UPMEM SDK (i.e., the software development kit for
using these PIM modules) also alters it. For instance, as Fig. 1 shows,
the sweet spot is 28 ranks for 23° rows, and 20 to 28 ranks for 228


https://orcid.org/0000-0002-0688-9440
https://orcid.org/0000-0001-9469-2367
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3744915.3748472
https://doi.org/10.1145/3744915.3748472

SPLC-A 25, September 1-5, 2025, A Corufia, Spain

>y Vo
% 2*)(\)(7\ \*7\7)(7“)&7\*7/%747)(7*;*
= 1*%777> E— =
= N_\(—ﬂ(—\_:_:‘xiiﬁxi_ -

0 | T I

0 10 20 30 40

# ranks

Figure 1: DBMS reference benchmark latency with variable
number of PIM modules (X axis) and benchmark column
size (coloured lines). Lines are CART performance model
predictions for UPMEM SDK 2023.2.0 (dashed) and 2025.1.0
(solid), crosses refer to benchmark output (ground truth).

rows. Meanwhile, CPU execution behaves as expected: additional
cores decrease latency until they hit the memory wall [33].

The CART model used for performance prediction is not at fault
here: underlying benchmark data (crosses in Fig. 1) confirms both
observations. However, the model is unsuitable for understanding
why the DBMS is behaving this way. On the one hand, with 4,391
tree nodes, it is too complex for manual interpretation. On the
other hand, the model treats the DBMS as a black box (i.e., it only
assigns a total latency to an entire benchmark run), and thus lacks
fine-grained performance insights.

This paper proposes a white-box performance modelling ap-
proach that builds upon state machine-based behaviour models
and regression model trees. It decomposes system behaviour into
sequences of events, associates each event with individual perfor-
mance models, and also takes runtime- and benchmark-specific
attributes such as the column size used for performance model gen-
eration into account. The resulting performance prediction models
for runtime attributes of software product lines are simple and accu-
rate, thus helping SPL engineers and users understand and explain
effects such as the one described in the previous paragraphs.

The next section introduces the concepts we propose for under-
standing feature- and workload-dependent runtime performance
attributes of configurable software systems, using the DBMS prod-
uct line as a running example to illustrate their use. Afterwards,
Section 3 compares the training overhead, accuracy, complexity,
and flexibility of performance-aware behaviour models with con-
ventional performance modelling approaches, including models
that are aware of workload-specific runtime attributes. Section 4
examines related work, and Section 5 concludes this paper.

2 Contribution

We combine three components: runtime variability, behaviour mod-
els, and regression model trees.

2.1 Runtime Variability

Prior research on performance models for software product lines
has focused on the relation between configurable features and per-
formance attributes. For instance, the x264 video codec and the influ-
ence of its flags (e.g., target bitrate or psycho-visual optimizations)
on attributes such as encoding latency is a common evaluation tar-
get for performance model learning algorithms [38, 45]. However,
encoding latency also depends on the input file: longer videos or

Birte Friesel and Olaf Spinczyk

DBMS

Figure 2: Variability model for a DBMS product line, includ-
ing runtime-only variability (dashed boxes).

higher resolutions will likely lead to increased encoding latencies.
Yet, publications that utilize x264 encoding latency as an evaluation
target for performance modelling methods do not take variable
input files into account, instead using a fixed reference workload
(i-e., a single file) for learning and evaluation [18, 26, 43, 45, 48].

The same applies to our DBMS example: throughput and latency
do not just depend on compile-time features, but also on runtime
attributes such as the size of the columns that individual database
operations access. Although column size is not a feature in the
sense of product line engineering, it is relevant for performance
prediction — otherwise, performance models can only predict per-
formance attributes for whichever fixed column size has been used
in the benchmark that they were trained on. Similarly, compile-
time features may be changed at runtime. This is prevalent in, e.g.,
SQLite, where the majority of features encode default behaviour
that can later be overridden for individual database connections.
Hence, performance models must be able to consider runtime vari-
ability in addition to conventional product line features.

We propose to address this by adding runtime-only components
to the variability model. These describe runtime variability that is
relevant for performance prediction despite not encoding features
in the product line engineering sense. Essentially, this turns our
DBMS into a dynamic software product line [28]: we do not just
allow compile-time features to be changed at runtime, but also
support runtime-only variability.

Fig. 2 shows the extended variability model for our running ex-
ample, with runtime-only entries marked as dashed boxes. It has
optional support for PIM, and allows users to configure a default
number of PIM ranks (if PIM is enabled) as well as a default num-
ber of cores used for CPU execution. Its runtime-only variability
consists of the number of instructions used by kernels offloaded
to PIM modules, the operation that each database kernel executes,
and the number of rows that it operates on.

Note that we leave out compile-time database features such as
shared caches or query planner configuration in order to keep the
example small enough to fit within this paper. All of our methods
also apply to more complex product lines that include a wider range
of compile- and runtime options, such as SQLite or Postgres.

2.2 Behaviour Models

Similar to the lack of runtime variability mentioned in the pre-
vious section, all past performance modelling research for soft-
ware product lines that we are aware of has used fixed reference
workloads (benchmarks) for model learning and evaluation. For



Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees

instance, existing SQLite or Postgres latency or throughput predic-
tion models were learnt and evaluated on a standard benchmark,
and are thus only valid for this benchmark’s workload (i.e., query
sequences) [25, 34, 38, 42]. While there are transfer learning ap-
proaches that are capable of adjusting a performance model to hard-
ware or workload changes [29], those still require new benchmarks
whenever the workload changes, as the underlying performance
model is unaware of workload-dependent performance attributes.

We propose to make the workload an explicit component of the
performance model instead, thus allowing the model to predict
runtime-specific performance attributes of arbitrary workloads. In
order to do so, we decompose the runtime behaviour of the product
line into individual steps, and define a state machine that expresses
how those steps interact. Each state machine transition corresponds
to a runtime step and is annotated with a set of performance models
that predict runtime performance attributes of just this step, while
taking feature configuration and runtime variability into account.

Our concept builds upon featured transition systems [4, 14,
15]. These provide an established method for modelling feature-
dependent runtime behaviour of product lines by extending state
machine transitions (runtime steps) with feature guards. A tran-
sition can only be taken if the current product line configuration
satisfies the corresponding feature guard, which expresses feature
constraints by means of a logic formula that references the vari-
ability model. In contrast to related works that annotate transitions
with constant energy or latency values (thus transforming them
into weighted featured transition systems or featured weighted au-
tomata) [10, 19, 36], we annotate them with arbitrary performance
models such as CART or regression model trees.

In our DBMS example, runtime steps relate to individual database
kernels. If PIM is disabled and a benchmark exercises a sequence
of n SELECT and m UPDATE queries, the total latency is n times
the latency of a single SELECT kernel plus m times the latency
of a single UPDATE kernel. For PIM execution, the sequence of
steps is more complex, and also depends on follow-up queries. The
DBMS needs to allocate PIM ranks, write query-specific column
data to them, upload a kernel binary, write query arguments such
as column size or a WHERE clause, run the kernel, and read back
its output. In case follow-up queries access the same column, the
cost for rank allocation and data transfer has to be paid just once
for each set of consecutive queries.

Fig. 3 shows a state machine that encodes this range of runtime
behaviours, thus providing a behaviour model. For CPU execu-
tion (prefixed with [CPU]), runKernel is a single step that may
be repeated (as described by the dotted e-transition) in case the
workload consists of multiple queries. For PIM execution (prefixed
with [PIM]), a single query consists of the steps outlined previously.
Follow-up queries may re-use existing data and kernel (e-transition
to d), upload a new kernel to work on existing data (e-transition to
¢), or start anew (e-transition to the initial state a).

The Band T annotations refer to performance models for through-
put (B) and latency (T), normalized to Bytes per second and sec-
onds, respectively. Now, we can determine the latency of arbitrary
workloads by querying the associated performance models and
calculating the sum of all latency predictions. For a throughput
model B, given workload data size D, we calculate latency T = %.

SPLC-A °25, September 1-5, 2025, A Corufa, Spain

B(op, #cores)
[CPU] runKernel

[PIM] alloc [T]€ " IPIM] readResult
T (#ranks) : B(#ranks)

PIMI e .
[PIM] writeData _ » [PIM] runKernel
B(#tranks) - T(op, #rows, #ranks)

[PIM] loadKernel [PIM] writeQuery
T (#ranks, #instr) = writeData

Figure 3: Annotated behaviour model for running an SQL
query kernel on the CPU or on PIM modules.

We deliberately support throughput and latency models so that SPL
engineers can utilize whichever is least complex and most accurate.

Given a behaviour model A and a variability model with a set of
variables (features and runtime variability) V, we define a workload
as a sequence W = (01, %1), ..., (04, X) with o - - - 0, € L(A). The
mapping X; : V — R encodes the feature and runtime configuration
of each transition; numeric features with unsatisfied dependencies
as well as unconfigured runtime variables are encoded as L. Thus,
the total latency of a workload is T(W) = Y. Ty, (%;).

For instance, the latency of running two consecutive SELECT
operations on the same column, using four CPU cores and accessing
2%0 rows (233 Bytes) of data, is 2 - m. The latency of
these operations on PIM, using 20 ranks, 538 kernel instructions,

64 Bytes of query arguments, and 227 Bytes of results, is as follows.
33
T, 20) + —— + 1) 20,538
alloc( ) BuriteData (20) loadKernel( )
64 30 2%
+2 - | m————————— + TrunKernel (SELECT, 2°°, 20) +

BwriteData(ZO) Breadresult (20)

2.3 Regression Model Trees

Behaviour models alone ore not sufficient for understanding prod-
uct line performance: the individual CART models in this example
are still complex, with 79 to 1,279 tree nodes.

This is due to a design limitation of CART and related methods:
each decision node holds a boolean query (e.g., #ranks < 20), and
each leaf node holds a static weight. Thus, they are incapable of
naturally expressing continuous (e.g., linear or inverse) relation-
ships between runtime variables and performance attributes. While
least-squares regression can express such natural relationships with
ease, it relies on a suitable template for fitting, and suffers when
dealing with interactions between boolean and numeric variables.

Regression model trees (RMT) extend regression trees by re-
placing static weights in leaf nodes with regression formulas, thus
combining the benefits of decision trees (an easy-to-grasp tree struc-
ture for boolean variables) and least-squares regression (concise
formulas for numeric variables) [24]. They do so by splitting vari-
ability into two parts: decision nodes exclusively reference boolean
variables, and leaf nodes exclusively reference numeric variables.



SPLC-A 25, September 1-5, 2025, A Corufia, Spain

Operation
% Upq,
=
237 ps 213 ps 383 ps
F#Hrows F#rows F#Hrows
+ 0.68ns - #ranl,l;:s‘ +0.54ns - #T:nks +0.43ns - #ranlf;;

Figure 4: A regression model tree (RMT) for runKernel la-
tency prediction when using PIM.

Fig. 4 shows an RMT for predicting runKernel latency on PIM.
Since SELECT, COUNT and UPDATE are marked as alternatives
in the variability model, they are mutually exclusive. The RMT
learning algorithm is aware of this relationship and thus uses a sin-
gle categorical variable Operation € {SELECT, COUNT, UPDATE}
rather than three variables SELECT, COUNT, UPDATE € {0, 1}. This
provides an additional benefit for interpretability by having the
performance model structure closely resemble the variability model,
despite having been learnt automatically.

The RMT learning algorithm builds the regression model tree in
a recursive, top-down manner. First, it greedily adds decision nodes
that partition the training data based on whichever non-numeric
feature or runtime variable provides the greatest loss reduction (i.e.,
the highest model accuracy improvement). This handling of deci-
sion nodes is almost identical to the CART learning algorithm [11],
except that RMT only consider boolean and categorical variables
(see above) for decision nodes. Once additional splits no longer
provide adequate loss reduction, the RMT learning algorithm adds
a leaf node. Here, it utilizes unsupervised least-squares regression
(ULS) to automatically find and fit a suitable least-squares regression
formula [21], ignoring any non-numeric variables. This formula
expresses how numeric variables affect product line performance
in the partial configuration that is defined by the path from the root
to the leaf. For instance, the rightmost leaf formula in Fig. 4 is only
valid for workload steps with Operation = UPDATE.

ULS uses a domain-specific set G of regression templates. Here,
we are only interested in linear and roofline functions, and set G =
{x = py1-x,x +— p1-min(x, f2)}. For each variable i, the algorithm
first determines whether it affects product line performance in the
partial configuration corresponding to the leaf node that is currently
being processed. If that is the case, it looks for the function template
gi € G that is best suited for predicting how x; affects product line
performance. Finally, it combines all functions g;,, gi,, ... into a
single function f, and annotates the leaf with it [21]. As the RMT
learning algorithm has already taken care of all boolean variables,
ULS exclusively deals with numeric variability.

3 Evaluation

We will now examine how runtime variability, behaviour mod-
els, and regression model trees allow SPL engineers and users
to understand product line performance (qualitative evaluation),
and compare their accuracy, complexity, and data acquisition over-
head to behaviour models with CART as well as CART without
behaviour models (quantitative evaluation). Artefacts are available
at https://ess.cs.uos.de/git/artifacts/splc25-behaviour-models and
archived at https://zenodo.org/records/15827230 [20].

Birte Friesel and Olaf Spinczyk

We use a systematic configuration space exploration during
model learning to ensure that inappropriate sampling does not
interfere with our evaluation. For the behaviour model’s RMT and
CART models, we benchmark 1 to 40 ranks (40 measurements each)
for alloc, writeData and readResult, and 1 to 40 ranks times 22
to 3,862 instructions for loadKernel (40 - 16 measurements). Each
database kernel is benchmarked on 2% to 232 database rows times
1 to 40 ranks (steps of 1/2/4), giving 2 - 13 - 13 measurements. For
CART without behaviour models, we benchmark the product of
two operations, 220 t0 232 database rows, 1 to 40 ranks, and 1 to 100
consecutive operations. Benchmarks with 1 to 20 operations (7 in
total) exclusively use COUNT or SELECT operations; benchmarks
with 100 operations mix COUNT, SELECT, and UPDATE.

3.1 Qualitative Evaluation

We are still on a quest to learn about the unexpected latency be-
haviour of database kernels on UPMEM PIM shown in Fig. 1. We
will start with performance on SDK 2023.2.0, and then examine
the changes brought by SDK 2025.1.0. Fig. 4 shows the model for
runKernel; the others are as follows.

Talloc = 13.6 ms + 12.4 ms - #ranks

TioadKernel = 460 ps + 2.9 us - #instr + 16.7 us - #ranks
Byritepata = 1423 MB + 254 MB . min (#ranks, 28.3)

Breadresults = 2278 MB + 174 MB . min (#ranks, 28.7)

So, #ranks is both beneficial and detrimental: while runKernel
latency is inversely proportional to the number of ranks, alloc
latency is proportional to it. Moreover, additional ranks have little
influence on data transfer throughput, and stop being helpful once
more than 28 ranks are in use. Combined with the near-linear
heads and tails visible in Fig. 1, this indicates that limited runKernel
parallelism is the main driver of total latency when few ranks are
in use, whereas DPU allocation (up to 500 ms) and limited data
throughput are the bottlenecks when using (almost) all available
ranks. So, it is clear that optimizing PIM kernel implementations
will likely only lead to marginal improvements.

With UPMEM SDK 2025.1.0, runKernel latency does not change
beyond the measurement uncertainty. DPU allocation latency and
data transfers to PIM improve notably, whereas kernel upload be-
comes slightly (but not significantly) slower.

Talloc = 23.3ms + 2.5ms - #ranks

TioadKernel = 524 ps + 2.8 us - #instr + 18.2 us - #ranks
ByriteData = 4798 MB + 348 MB . min(#ranks, 22.7)

BreadResults = 2656 M2 + 174 MB . min(#ranks, 27.9)

Data transfer to PIM modules is much faster, especially when
only few ranks are allocated, thus explaining why the high-latency
head in Fig. 1 is nearly gone. While there is no throughput improve-
ment beyond 23 ranks, the penalty for allocating more ranks is
lower, hence the tail is also less pronounced.

Moreover, the behaviour model allows users to determine for
which configurations PIM execution is faster than CPU execution.


https://ess.cs.uos.de/git/artifacts/splc25-behaviour-models
https://zenodo.org/records/15827230

Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees

Table 1: Cross-validated prediction error and complexity
score of evaluated CART and behaviour model variants.

Metric CART CART-B BM-CART BM-RMT
Complexity 2,937 4,391 2,899 22
Error 14.6 % 3.8% 3.8% 7.7%

For instance, on our own server, PIM is only beneficial once column
size exceeds 256 MiB (COUNT) to 2 GiB (SELECT), and when at
least two consecutive queries are to be expected [23]. All of these
insights are only feasible thanks to the combination of runtime
variability, behaviour models, and regression model trees.

3.2 Quantitative Evaluation

Regression model trees deliberately trade accuracy for interpretabil-
ity. Here, we examine how much accuracy they lose, and show that
they are still sufficiently accurate for reasoning about product line
performance. Our baseline (CART) consists of a CART model based
on the variability model shown in Fig. 2. We compare it with a
CART model that also knows about the amount of SELECT, COUNT,
and UPDATE operations in the benchmark (CART-B), a behaviour
model augmented with CART performance models (BM-CART),
and a behaviour model augmented with regression model trees
(BM-RMT). Column size is variable, but constant during each indi-
vidual benchmark run, hence the two CART-only models and the
two behaviour model variants can be compared in a fair manner.

Table 1 gives prediction error after cross-validation and model
complexity (as a proxy metric for interpretability) for all four eval-
uation targets. Model complexity is the number of decision nodes
in all referenced CART or RMT models plus the number of leaf
nodes (CART) or least-squares regression weights referenced in
leaf nodes (RMT). We see that awareness of workload-dependent
runtime variability is mandatory for accurate performance predic-
tions, and that CART are too complex for manual performance
analysis. Behaviour models with regression model trees, on the
other hand, reduce model complexity by two orders of magnitude.
While this comes at the cost of higher prediction error, the models
are still sufficiently accurate for gaining insights into product line
performance. In our opinion, this trade-off is well worth it.

Data acquisiiton for CART and CART-B produces 2-13-13-8 =
2704 samples. Meanwhile, data acquisition for BM-CART and BM-
RMT uses just 40 samples for alloc, writeData and readResult, 4013
samples for loadKernel, and 2 - 13 - 13 for runKernel, resulting in
3-40+40-16 + 213 - 13 = 1098 samples. Moreover, as BM-
CART and BM-RMT runKernel measurements do not have to take
consecutive queries into account, total daca acquisition time for
behaviour models is an order of magnitude lower than for CART-B.

4 Related Work

As discussed in Section 2.2, state machine-based behaviour models
are well-known in the product line engineering domain [4], as is
their extension with constant energy or latency attributes [10, 19,
36]. Applications include model checking [14, 15], model-based
analysis of product families [8, 17, 31], and similar [16].

SPLC-A °25, September 1-5, 2025, A Corufa, Spain

The only approaches that combine behaviour models with ar-
bitrary performance models that we are aware of originate from
energy modelling for cyber-physical systems and not SPL research.
There, engineers often utilize state machine models (“energy mod-
els”) to describe the relation between runtime system behaviour
and latency or energy usage [13, 49]. While these take runtime con-
figuration into account, they lack a formal concept of configurable
features, and do not follow product line engineering guidelines.

Regression model trees also originate from the energy modelling
domain [24]. Their closest relative from the SPL domain are linear
model trees [32, 39, 40]. These extend the CART learning algorithm
with a bottom-up pruning step that merges sub-trees into linear
regression functions. RMT, by contrast, support arbitrary functions
in leaf nodes and do not use numeric features in decision nodes,
making them easier to understand. Provably optimal and inter-
pretable sparse regression trees are a promising candidate [47], but
do not support categorical or numeric variability yet.

5 Conclusion and Future Work

We have shown how product line engineers and users can un-
derstand the runtime performance of software product lines by
combining runtime variability (dynamic software product lines), be-
haviour models (featured transition systems), and regression model
trees. Our novel combination of these three concepts reduces the
runtime of training data acquisition by an order of magnitude and
the complexity of the resulting performance models by two or-
ders of magnitude, while retaining sufficient model accuracy for
reasoning about product line performance.

We expect that these methods are applicable to a wide range of
product lines and performance attributes beyond the custom DBMS
application that we have used as a running example and evaluation
target. For instance, as mentioned in the previous section, behaviour
models and regression model trees also support power and energy
usage prediction. We expect that other attributes, such as runtime
memory usage or carbon emissions, can also be handled with ease.

Currently, the structure of the behaviour model must be pro-
vided manually, and acquisition of benchmark data in our DBMS
example required changes to its source code for timing the steps
involved in PIM operations. Neither of this is a design limitation.
On the one hand, learning state machines from software systems is
a well-researched topic [12], and we expect that we can apply those
algorithms to behaviour models (featured transition systems) as
well. On the other hand, depending on desired model granularity,
source code changes may not be required. For instance, an SQLite
behaviour model that encodes the latency of individual database
operations (COUNT, SELECT, UPDATE, . ..) rather than an entire
benchmark may already be good enough for many applications.

In our opinion, it is time for runtime performance models to step
away from predicting performance attributes for fixed reference
benchmarks, and instead become aware of runtime configuration
and workload. Runtime variability, behaviour models, and regres-
sion model trees offer a first step into this direction.

Acknowledgments

This work has been funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) — 502565817.



SPLC-A 25, September 1-5, 2025, A Corufia, Spain Birte Friesel and Olaf Spinczyk

References
[1] Andreas Abele, Rolf Johansson, Henrik Lonn, Yiannis Papadopoulos, Mark-Oliver

[18] Johannes Dorn, Sven Apel, and Norbert Siegmund. 2021. Mastering Uncertainty
in Performance Estimations of Configurable Software Systems. In Proceedings of

—

=

Reiser, David Servat, Martin Térngren, and Matthias Weber. 2010. The CVM
Framework — A Prototype Tool for Compositional Variability Management. In
Proceedings of the 4th International Workshop on Variability Modelling of Software-
Intensive Systems (Linz, Austria) (VaMoS ’10), David Benavides, Don S. Batory,
and Paul Griinbacher (Eds.). Universitdt Duisburg-Essen, 101-105. doi:10.17185/
duepublico/47086

Mathieu Acher, Hugo Martin, Luc Lesoil, Arnaud Blouin, Jean-Marc Jézéquel,
Djamel Eddine Khelladi, Olivier Barais, and Juliana Alves Pereira. 2022. Feature
Subset Selection for Learning Huge Configuration Spaces: The Case of Linux
Kernel Size. In Proceedings of the 26th International Systems and Software Product
Line Conference - Volume A (Graz, Austria) (SPLC °22). Association for Computing
Machinery, New York, NY, USA, 85-96. doi:10.1145/3546932.3546997

Timo Asikainen, Tomi Mannisto, and Timo Soininen. 2006. A Unified Conceptual
Foundation for Feature Modelling. In Proceedings of the 10th International Software
Product Line Conference (Baltimore, MD, USA) (SPLC ’06). IEEE, 31-40. doi:10.
1109/SPLINE.2006.1691575

Joanne M. Atlee, Uli Fahrenberg, and Axel Legay. 2015. Measuring Behaviour
Interactions between Product-Line Features. In Proceedings of the 3rd FME Work-
shop on Formal Methods in Software Engineering (Florence, Italy) (FormaliSE ’15).
IEEE, 20-25. d0i:10.1109/FormaliSE.2015.11

Alexander Baumstark, Muhammad Attahir Jibril, and Kai-Uwe Sattler. 2023.
Accelerating Large Table Scan using Processing-In-Memory Technology. In
Proceedings of the 20th Conference on Database Systems for Business, Tech-
nology and Web (BTW’23). Gesellschaft fiir Informatik eV., Bonn, 797-814.
doi:10.18420/BTW2023-51

Alexander Baumstark, Muhammad Attahir Jibril, and Kai-Uwe Sattler. 2023.
Adaptive Query Compilation with Processing-in-Memory. In Proceedings of the
39th International Conference on Data Engineering Workshops (ICDEW °23). IEEE,
191-197. doi:10.1109/ICDEW58674.2023.00035

Alexander Baumstark, Muhammad Attahir Jibril, and Kai-Uwe Sattler. 2023.
Processing-in-Memory for Databases: Query Processing and Data Transfer. In
Proceedings of the 19th International Workshop on Data Management on New
Hardware (Seattle, WA, USA) (DaMoN °23). Association for Computing Machinery,
New York, NY, USA, 107-111. doi:10.1145/3592980.3595323

Harsh Beohar and Mohammad Reza Mousavi. 2016. Input-output conformance
testing for software product lines. Journal of Logical and Algebraic Methods in
Programming 85, 6 (2016), 1131-1153. doi:10.1016/].jlamp.2016.09.007 NWPT
2013.

Quentin Boucher, Andreas Classen, Paul Faber, and Patrick Heymans. 2010.
Introducing TVL, a Text-based Feature Modelling Language. In Proceedings of the
4th International Workshop on Variability Modelling of Software-Intensive Systems
(Linz, Austria) (VaMoS ’10). Universitidt Duisburg-Essen, 159-162. doi:10.17185/
duepublico/47086

Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen, Nicolas Markey, and Jifi Srba.
2008. Infinite Runs in Weighted Timed Automata with Energy Constraints. In
Proceedings of the 6th International Conference on Formal Modeling and Analysis
of Timed Systems (FORMATS’08). Springer Berlin, Heidelberg, 33-47. doi:10.1007/
978-3-540-85778-5_4

Leo Breiman, Jerome H Friedman, Richard A Olshen, and Charles J Stone. 1984.
Classification and Regression Trees (1 ed.). Routledge. doi:10.1201/9781315139470
Sofia Cassel, Falk Howar, Bengt Jonsson, and Bernhard Steffen. 2016. Active
learning for extended finite state machines. Formal Aspects of Computing 28, 2
(2016), 233-263. do0i:10.1007/s00165-016-0355-5

Nadir Cherifi, Thomas Vantroys, Alexandre Boe, Colombe Herault, and Gilles
Grimaud. 2017. Automatic Inference of Energy Models for Peripheral Compo-
nents in Embedded Systems. In Proceedings of the 5th International Conference on
Future Internet of Things and Cloud (Prague, Czech Republic) (FiCloud '17). IEEE,
120-127. doi:10.1109/FiCloud.2017.53

Andreas Classen, Maxime Cordy, Patrick Heymans, Axel Legay, and Pierre-
Yves Schobbens. 2014. Formal semantics, modular specification, and symbolic
verification of product-line behaviour. Science of Computer Programming 80, PB
(2 2014), 416-439. doi:10.5555/2748144.2748397

Andreas Classen, Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, Axel
Legay, and Jean-Frangois Raskin. 2013. Featured Transition Systems: Foundations
for Verifying Variability-Intensive Systems and Their Application to LTL Model
Checking. IEEE Transactions on Software Engineering 39, 8 (2013), 1069-1089.
doi:10.1109/TSE.2012.86

Maxime Cordy, Xavier Devroey, Axel Legay, Gilles Perrouin, Andreas Classen,
Patrick Heymans, Pierre-Yves Schobbens, and Jean-Frangois Raskin. 2019. A
Decade of Featured Transition Systems. Springer International Publishing, Cham,
285-312. doi:10.1007/978-3-030-30985-5_18

Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, and Axel Legay. 2012.
Behavioural Modelling and Verification of Real-Time Software Product Lines. In
Proceedings of the 16th International Software Product Line Conference - Volume 1

(Salvador, Brazil) (SPLC ’12). Association for Computing Machinery, New York,
NY, USA, 66-75. doi:10.1145/2362536.2362549

the 35th IEEE/ACM International Conference on Automated Software Engineering
(Melbourne, Australia) (ASE "20). Association for Computing Machinery, New
York, NY, USA, 684-696. doi:10.1145/3324884.3416620

Uli Fahrenberg and Axel Legay. 2017. Featured Weighted Automata. In Proceedings
of the 5th International FME Workshop on Formal Methods in Software Engineering
(FormaliSE ’17). IEEE, 51-57. doi:10.1109/FormaliSE.2017.2

Birte Friesel. 2025. Understanding Product Line Runtime Performance with Be-
haviour Models and Regression Model Trees (Artefact). doi:10.5281/zenodo.15827230
Birte Friesel, Markus Buschhoff, and Olaf Spinczyk. 2018. Parameter-Aware
Energy Models for Embedded-System Peripherals. In Proceedings of the 13th
International Symposium on Industrial Embedded Systems (Graz, Austria) (SIES
’18). IEEE, 4 pages. doi:10.1109/SIES.2018.8442096

Birte Friesel, Kathrin Elmenhorst, Lennart Kaiser, Michael Miiller, and Olaf
Spinczyk. 2022. kconfig-webconf: Retrofitting Performance Models onto Kconfig-
Based Software Product Lines. In Proceedings of the 26th International Systems
and Software Product Line Conference - Volume B (Graz, Austria) (SPLC "22). As-
sociation for Computing Machinery, New York, NY, USA, 58-61. doi:10.1145/
3503229.3547026

Birte Friesel, Marcel Liitke Dreimann, and Olaf Spinczyk. 2025. Lightning Talk:
Feasibility Analysis of Semi-Permanent Database Offloading to UPMEM Near-
Memory Computing Modules. In Datenbanksysteme fiir Business, Technologie
und Web — Workshopband. Gesellschaft fur Informatik, Bonn, Germany, 355-366.
doi:10.18420/BTW2025- 140

Birte Friesel and Olaf Spinczyk. 2022. Regression Model Trees: Compact Energy
Models for Complex IoT Devices. In Proceedings of the Workshop on Benchmarking
Cyber-Physical Systems and Internet of Things (Milan, Italy) (CPS-IoTBench 22).
IEEE, 1-6. doi:10.1109/CPS-IoTBench56135.2022.00007

Jianmei Guo, Krzysztof Czarnecki, Sven Apel, Norbert Siegmund, and Andrzej
Wasowski. 2013. Variability-Aware Performance Prediction: A Statistical Learn-
ing Approach. In Proceedings of the 28th IEEE/ACM International Conference on
Automated Software Engineering (ASE ’13). IEEE, 301-311. doi:10.1109/ASE.2013.
6693089

Jianmei Guo, Dingyu Yang, Norbert Siegmund, Sven Apel, Atrisha Sarkar, Pavel
Valov, Krzysztof Czarnecki, Andrzej Wasowski, and Huiqun Yu. 2018. Data-
Efficient Performance Learning for Configurable Systems. Empirical Software
Engineering 23, 3 (6 2018), 1826-1867. doi:10.1007/s10664-017-9573-6

Juan Gomez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo F.
Oliveira, and Onur Mutlu. 2022. Benchmarking a New Paradigm: Experimental
Analysis and Characterization of a Real Processing-in-Memory System. [EEE
Access 10 (2022), 52565-52608. doi:10.1109/ACCESS.2022.3174101

Svein Hallsteinsen, Mike Hinchey, Sooyong Park, and Klaus Schmid. 2008. Dy-
namic Software Product Lines. Computer 41, 4 (2008), 93-95. doi:10.1109/MC.
2008.123

Pooyan Jamshidi, Norbert Siegmund, Miguel Velez, Christian Késtner, Akshay
Patel, and Yuvraj Agarwal. 2017. Transfer learning for performance modeling
of configurable systems: an exploratory analysis. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering (Urbana-
Champaign, IL, USA) (ASE ’17). IEEE Press, 497-508.

Chaemin Lim, Suhyun Lee, Jinwoo Choi, Jounghoo Lee, Seongyeon Park, Hanjun
Kim, Jinho Lee, and Youngsok Kim. 2023. Design and Analysis of a Processing-
in-DIMM Join Algorithm: A Case Study with UPMEM DIMMs. Proceedings of the
ACM on Management of Data 1, 2, Article 113 (jun 2023), 27 pages. doi:10.1145/
3589258

Lars Luthmann, Andreas Stephan, Johannes Biirdek, and Malte Lochau. 2017.
Modeling and Testing Product Lines with Unbounded Parametric Real-Time
Constraints. In Proceedings of the 21st International Systems and Software Product
Line Conference - Volume A (Sevilla, Spain) (SPLC ’17). Association for Computing
Machinery, New York, NY, USA, 104-113. doi:10.1145/3106195.3106204

Donato Malerba, Floriana Esposito, Michelangelo Ceci, and Annalisa Appice.
2004. Top-down induction of model trees with regression and splitting nodes.
IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 5 (5 2004),
612-625. doi:10.1109/TPAMI.2004.1273937

Sally A. McKee. 2004. Reflections on the memory wall. In Proceedings of the 1st
Conference on Computing Frontiers (CF '04). Association for Computing Machinery,
162. doi:10.1145/977091.977115

Vivek Nair, Tim Menzies, Norbert Siegmund, and Sven Apel. 2017. Using bad
learners to find good configurations. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering (Paderborn, Germany) (ESEC/FSE 2017).
Association for Computing Machinery, New York, NY, USA, 257-267. doi:10.
1145/3106237.3106238

Vivek Nair, Zhe Yu, Tim Menzies, Norbert Siegmund, and Sven Apel. 2020. Finding
Faster Configurations Using FLASH. IEEE Transactions on Software Engineering
46, 7 (7 2020), 794-811. doi:10.1109/TSE.2018.2870895

Rafael Olaechea, Uli Fahrenberg, Joanne M. Atlee, and Axel Legay. 2016. Long-
term average cost in featured transition systems. In Proceedings of the 20th
International Systems and Software Product Line Conference (Beijing, China)


https://doi.org/10.17185/duepublico/47086
https://doi.org/10.17185/duepublico/47086
https://doi.org/10.1145/3546932.3546997
https://doi.org/10.1109/SPLINE.2006.1691575
https://doi.org/10.1109/SPLINE.2006.1691575
https://doi.org/10.1109/FormaliSE.2015.11
https://doi.org/10.18420/BTW2023-51
https://doi.org/10.1109/ICDEW58674.2023.00035
https://doi.org/10.1145/3592980.3595323
https://doi.org/10.1016/j.jlamp.2016.09.007
https://doi.org/10.17185/duepublico/47086
https://doi.org/10.17185/duepublico/47086
https://doi.org/10.1007/978-3-540-85778-5_4
https://doi.org/10.1007/978-3-540-85778-5_4
https://doi.org/10.1201/9781315139470
https://doi.org/10.1007/s00165-016-0355-5
https://doi.org/10.1109/FiCloud.2017.53
https://doi.org/10.5555/2748144.2748397
https://doi.org/10.1109/TSE.2012.86
https://doi.org/10.1007/978-3-030-30985-5_18
https://doi.org/10.1145/2362536.2362549
https://doi.org/10.1145/3324884.3416620
https://doi.org/10.1109/FormaliSE.2017.2
https://doi.org/10.5281/zenodo.15827230
https://doi.org/10.1109/SIES.2018.8442096
https://doi.org/10.1145/3503229.3547026
https://doi.org/10.1145/3503229.3547026
https://doi.org/10.18420/BTW2025-140
https://doi.org/10.1109/CPS-IoTBench56135.2022.00007
https://doi.org/10.1109/ASE.2013.6693089
https://doi.org/10.1109/ASE.2013.6693089
https://doi.org/10.1007/s10664-017-9573-6
https://doi.org/10.1109/ACCESS.2022.3174101
https://doi.org/10.1109/MC.2008.123
https://doi.org/10.1109/MC.2008.123
https://doi.org/10.1145/3589258
https://doi.org/10.1145/3589258
https://doi.org/10.1145/3106195.3106204
https://doi.org/10.1109/TPAMI.2004.1273937
https://doi.org/10.1145/977091.977115
https://doi.org/10.1145/3106237.3106238
https://doi.org/10.1145/3106237.3106238
https://doi.org/10.1109/TSE.2018.2870895

Understanding Product Line Runtime Performance with Behaviour Models and Regression Model Trees

(SPLC ’16). Association for Computing Machinery, New York, NY, USA, 109-118.
doi:10.1145/2934466.2934473

Rafael Olaechea, Steven Stewart, Krzysztof Czarnecki, and Derek Rayside. 2012.
Modelling and Multi-Objective Optimization of Quality Attributes in Variability-
Rich Software. In Proceedings of the 4th International Workshop on Nonfunctional
System Properties in Domain Specific Modeling Languages (Innsbruck, Austria)
(NFPinDSML ’12). Association for Computing Machinery, New York, NY, USA,
Article 2, 6 pages. doi:10.1145/2420942.2420944

Juliana Alves Pereira, Mathieu Acher, Hugo Martin, Jean-Marc Jézéquel, Goetz
Botterweck, and Anthony Ventresque. 2021. Learning software configuration
spaces: A systematic literature review. Journal of Systems and Software 182 (2021),
111044. doi:10.1016/j.jss.2021.111044

John R Quinlan et al. 1992. Learning with Continuous Classes. In Proceedings of
the 5th Australian Joint Conference on Artificial Intelligence (Hobart, Tasmania)
(AI °92). World Scientific, 343-348. do0i:10.1142/1897

Santosh Singh Rathore and Sandeep Kumar. 2016. A Decision Tree Regression
based Approach for the Number of Software Faults Prediction. SIGSOFT Software
Engineering Notes 41, 1 (1 2016), 6 pages. doi:10.1145/2853073.2853083

Marko Rosenmiiller, Norbert Siegmund, Thomas Thiim, and Gunter Saake. 2011.
Multi-Dimensional Variability Modeling. In Proceedings of the 5th Workshop on
Variability Modeling of Software-Intensive Systems (Namur, Belgium) (VaMoS ’11).
Association for Computing Machinery, New York, NY, USA, 11-20. doi:10.1145/
1944892.1944894

Atrisha Sarkar, Jianmei Guo, Norbert Siegmund, Sven Apel, and Krzysztof
Czarnecki. 2015. Cost-Efficient Sampling for Performance Prediction of Con-
figurable Systems. In Proceedings of the 30th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE) (ASE °15). IEEE, 342-352.
doi:10.1109/ASE.2015.45

Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Kastner. 2015.
Performance-Influence Models for Highly Configurable Systems. In Proceedings

SPLC-A °25, September 1-5, 2025, A Corufa, Spain

of the 10th Joint Meeting on Foundations of Software Engineering (Bergamo, Italy)
(ESEC/FSE ’15). Association for Computing Machinery, New York, NY, USA, 284-
294. doi:10.1145/2786805.2786845

Norbert Siegmund, Marko Rosenmuller, Christian Kastner, Paolo G. Giarrusso,
Sven Apel, and Sergiy S. Kolesnikov. 2011. Scalable Prediction of Non-functional
Properties in Software Product Lines. In Proceedings of the 15th International
Software Product Line Conference (Munich, Germany) (SPLC ’11). IEEE, 160-169.
doi:10.1109/SPLC.2011.20

Norbert Siegmund, Marko Rosenmiiller, Christian Késtner, Paolo G Giarrusso,
Sven Apel, and Sergiy S Kolesnikov. 2013. Scalable prediction of non-functional
properties in software product lines: Footprint and memory consumption. Infor-
mation and Software Technology 55, 3 (3 2013), 491-507. doi:10.1016/j.infsof.2012.
07.020

Julio Sincero, Wolfgang Schroder-Preikschat, and Olaf Spinczyk. 2010. Approach-
ing Non-functional Properties of Software Product Lines: Learning from Products.
In Proceedings of the Asia Pacific Software Engineering Conference (Sydney, Aus-
tralia) (APSEC ’10). IEEE, 147-155. doi:10.1109/APSEC.2010.26

Rui Zhang, Rui Xin, Margo Seltzer, and Cynthia Rudin. 2023. Optimal Sparse
Regression Trees. In Proceedings of the 37th AAAI Conference on Artificial
Intelligence (Washington, DC, USA) (AAAI ’23). AAAI Press, 11270-11279.
doi:10.1609/aaai.v3719.26334

Yi Zhang, Jianmei Guo, Eric Blais, and Krzysztof Czarnecki. 2015. Performance
Prediction of Configurable Software Systems by Fourier Learning. In Proceedings
of the 30th IEEE/ACM International Conference on Automated Software Engineering
(Lincoln, NE, USA) (ASE °15). IEEE, 365-373. doi:10.1109/ASE.2015.15

Nanhao Zhu and Athanasios V. Vasilakos. 2016. A generic framework for energy
evaluation on wireless sensor networks. Wireless Networks 22, 4 (5 2016), 1199-
1220. doi:10.1007/s11276-015-1033-x


https://doi.org/10.1145/2934466.2934473
https://doi.org/10.1145/2420942.2420944
https://doi.org/10.1016/j.jss.2021.111044
https://doi.org/10.1142/1897
https://doi.org/10.1145/2853073.2853083
https://doi.org/10.1145/1944892.1944894
https://doi.org/10.1145/1944892.1944894
https://doi.org/10.1109/ASE.2015.45
https://doi.org/10.1145/2786805.2786845
https://doi.org/10.1109/SPLC.2011.20
https://doi.org/10.1016/j.infsof.2012.07.020
https://doi.org/10.1016/j.infsof.2012.07.020
https://doi.org/10.1109/APSEC.2010.26
https://doi.org/10.1609/aaai.v37i9.26334
https://doi.org/10.1109/ASE.2015.15
https://doi.org/10.1007/s11276-015-1033-x

	Abstract
	1 Introduction
	2 Contribution
	2.1 Runtime Variability
	2.2 Behaviour Models
	2.3 Regression Model Trees

	3 Evaluation
	3.1 Qualitative Evaluation
	3.2 Quantitative Evaluation

	4 Related Work
	5 Conclusion and Future Work
	Acknowledgments
	References

