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ABSTRACT

Non-functional properties (NFPs) such as code size (RAM, ROM),
performance, and energy consumption are at least as important
as functional properties in many software development domains.
When configuring a software product line — especially in the area
of resource-constrained embedded systems — developers must be
aware of the NFPs of the configured product instance. Several NFP-
aware variability modeling languages have been proposed to ad-
dress this in the past. However, it is not clear whether a variabil-
ity modeling language is the best place for handling NFP-related
concerns, or whether separate NFP prediction models should be
preferred. We shine light onto this question by discussing limita-
tions of state-of-the-art NFP-aware variability modeling languages,
and find that both in terms of the development process and model
accuracy a separate NFP model is favorable. Our quantitative anal-
ysis is based on six different software product lines, including the
widely used busybox multi-call binary and the x264 video encoder.
We use classification and regression trees (CART) and our recently
proposed Regression Model Trees [8] as separate NFP models. These
tree-based models can cover the effects of arbitrary feature inter-
actions and thus easily outperform variability models with static,
feature-wise NFP annotations. For example, when estimating the
throughput of an embedded AI product line, static annotations
come with a mean generalization error of 114.5 % while the error
of CART is only 9.4 %.
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1 INTRODUCTION

In addition to functional properties (e.g. enabled features), software
product line instances also have non-functional properties (NFPs)
such as ROM/RAM requirements, latency, processing throughput,
or energy consumption. In many domains, these are at least as
important as functional properties. For instance, mass-produced
embedded systems tend to use severely resource-constrained low-
cost microcontrollers as execution platforms. Ignoring NFPs in this
domain can cause tremendous extra costs, as sub-optimal configu-
rations may quickly exhaust the available resources, resulting in
the need to build the product with a more powerful (and, thus, more
expensive) microcontroller instead. Subtle microcontroller differ-
ences may even raise the need for a hardware re-design, further
complicating the matter.

To avoid this issue, product developers must be aware of both
functional and non-functional properties of the configured prod-
uct instance when configuring a software product line. Several
NFP-aware variability modeling languages have been proposed to
address this by means of feature-wise NFP annotations, such as
ClaferMoo, Velvet, TVL, and VM [2, 3, 7, 11].

The contribution of this work to a possible “consensus on a
simple feature modeling language”! is an answer to the question
whether a feature modeling language should incorporate elements
for handling NFP-related concerns. The alternative are separate
NFP models that are connected to the variability model only on
the level of the configuration tool. We illustrate both approaches in
Figure 1.

We assume that a variability modeling language is used to de-
scribe a variability model (gray triangle in the figure). On the left,
NFP-related data is attached to the elements of the variability model
(e.g. optional features), and aggregate functions describe how the
NFPs of individual features make up the NFPs of the final product.
Therefore, specific language elements are required. In order to dis-
play NFP predictions, such as code size or performance indicators,
the configuration tool has to evaluate the NFP annotations and ag-
gregate functions based on the currently selected features. On the
right, separate NFP models are used for NFP prediction. The NFP
model is a function of arbitrary nature that takes a feature vector
(i-e., a formal representation of the current SPL configuration) as
input and returns the predicted NFP.
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Figure 1: Alternative approaches to handle NFP-related concerns in product line engineering: Integrated NFP-related information

(left) vs. separate NFP models (right)

Our qualitative and quantitative analysis in this paper discusses
and compares both approaches. Eventually, we come to the con-
clusion that separate NFP models are favorable. Thus, a variability
modeling language should not incorporate language elements that
can only be used for describing NFPs.

The remainder of this paper is structured as follows. Section 2
introduces the most widely known variability modeling languages
that come with language elements for describing NFPs and gives a
short overview on corresponding NFP models. The problem analysis
in Section 3 explains the main drawbacks of an integrated modeling
approach. Section 4 then presents our quantitative analysis and in
Section 5 we draw some final conclusions.

2 RELATED WORK

Much effort has gone into the development of concise textual lan-
guages for variability models.

In the early stage of the development of variability languages,
the need arose to express not only boolean feature toggles, but
also feature attributes. Hence, variability languages such as For-
famel [10] and VSL [1] were developed that support parameterizing
features with additional attributes (e.g. a clipboard’s buffer size).

As a welcome side effect, these allowed system designers to
express non-functional properties of individual product features by
augmenting them with attributes such as cost or memory usage.

However, parameterized features alone turned out to be in-
sufficient to determine properties of the entire product and find
optimal configurations regarding those. TVL [7], Clafer [4, 5],
and VELVET [11, 13] overcome this limitation by introducing
simple aggregate functions in feature attributes, thus allowing
reasoning about optimal configurations with respect to non-
functional properties. For example, TVL supports the expression
sum(selectedChildren.textSize), stating that a parent fea-
ture’s text segment size is the sum of the text segment size of all
enabled child features.

These languages are suitable for non-functional properties that
are a mere aggregation of per-feature values, such as product
costs. However, some non-functional properties, such as energy,
performance, and memory usage, cannot be determined via the
aggregation of feature attributes alone. In many cases, they are

susceptible to the interaction of many features. Thus, in addition
to feature-wise annotations, modern variability languages such
as ClaferMoo [3], SPL Conqueror [12, 14], and UVL [15] also in-
clude feature interactions in their variability models. For exam-
ple, in ClaferMoo, engineers may state that the program size is
(sum Feature.binarySize) x (Debug && 1.1 1), thus
expressing that the Debug feature increases it by 10 % on average.

SPL Congqueror includes a toolchain to automatically calculate
NFP values for features, freeing SPL engineers from the need to
manually annotate features. Even though SPL Conqueror appears
to be the most advanced approach for integrating NFPs into feature
models, it is limited to boolean features and only considers relatively
simple interactions between features.

Overall, recent approaches for NFP-aware feature models fo-
cus on simple feature-wise annotations, often relying on language
support for feature attributes. Although a questionnaire among
20 attendants of a past MODEVAR workshop indicates a general
preference for modeling languages that support feature attributes
[15] - and we agree that those are useful - in our opinion, it is still
not decided whether non-functional properties (essentially being a
specialization of feature attributes) should be integrated into feature
models or not. Meanwhile, the open-source community appears to
stick to expressing the impact of features on product quality and
performance as mere help messages or in-line annotations within
feature names rather than a formal non-functional property model.

3 PROBLEM ANALYSIS

Although many variability modeling languages provide support for
expressing feature attributes, using these for NFP modeling is sub-
ject to limitations that can affect the usability of the model. These
concerns can be grouped into five different topics: the annotation
process, annotation consistency, language complexity, implementa-
tion dependency, and modularity.

3.1 Annotation Process

NFP-related data is usually not available during variability model-
ing. Furthermore, for complex product lines, not all possible product
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instances can be generated and measured. An SPL with just 40 fea-
tures can generate up to 2%° (or about 10'2) different configurations,
making benchmarking all possible configurations infeasible.

As such, data must be added after the product line is already
in use, in a process of generating and measuring different config-
urations. Changing the NFP annotations in the variability model
whenever new data trickles in is a tedious and error-prone task.
Also, any change to the features or model may affect the already-
present annotations, making their accuracy uncertain unless new
measurements are performed. As the variability model gets more
complex, the annotation process becomes more and more difficult,
especially when done manually. This takes us to the next issue with
variability modeling languages with integrated NFP annotations.

3.2 Annotation Consistency

When using a variability modeling language capable of representing
NFPs, the annotated data and formulae must be added in some
way, be it manually or by an automatic tool. The first case impacts
product line development: as explained before, a domain expert will
likely not have this kind of data in the early stages of development,
and also would be obligated to add and update every NFP after new
measurements.

The second case, in contrast, presents a contradiction. If anno-
tations are automatically generated after measurements, there is
no reason for keeping them in the variability modeling language.
Having a dedicated, separate NFP model is sufficient, and allows
performance predictions to be performed without adding an extra
layer of complexity to the variability dimension.

3.3 Complexity

In SPLs, stakeholders want to extract the best possible variant of the
model for their application. Thus, being able to accurately predict
NFP values should be the core concern of NFP modeling. However,
as NFP prediction using simple feature annotations with constants
is incapable of expressing the influence of cross-cutting concerns
on a product’s non-functional properties, its accuracy is limited by
design. Therefore, approaches in the literature have become more
and more complex over time.

TVL [7] is an example of a language that supports NFPs as
attributes that can be inserted into the model. The attributes can
be from four different types (int, real, string, or enum), and the
language supports operations that can be used to calculate the NFP
of each configuration. However, it is not aimed at multi-objective
optimization and does not account for feature interactions.

ClaferMoo[3] is another language that models NFPs by means
of feature annotations. The corresponding implementation also
addresses the need for multi-objective optimization, but only has
limited support for feature interaction.

Tools like SPL Conqueror [12, 14] tackle the feature interaction
issue. Here, three types of heuristics (pair-wise, higher-order, and
hot-spot) are used to identify feature interactions and reduce the
number of benchmark measurements needed to obtain a sufficiently
accurate model. However, once again, it performs NFP measure-
ments and NFP model generation after variability modeling. It can
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also generate quite complex model expressions for feature interac-
tion, which is often good for model accuracy, but not necessarily
helpful for humans working with the variability model.

The trend of getting more complex relations is natural: as models
keep expanding, they are more likely to have interaction among
their features [16]. Extrapolating this trend into the future means
that at some point the rules or formulae in the variability model will
be so complex that they have no value for humans, and, therefore,
should not be part of the modeling language to begin with.

3.4 Implementation Dependency

One common concern when developing a modeling paradigm is
ensuring that the process is independent of implementation factors.
Having a dimension only for variability modeling adds more flexi-
bility to the choice of different implementations, and reduces the
number of properties the domain expert has to take into considera-
tion. However, NFPs intrinsically depend on the implementation,
and as such should not be added to the variability model. There
are examples of frameworks that keep these independent, such as
pure::variants[6], which is a commercial variant management tool
that strictly follows this separation policy.

3.5 Modularity

NFP modeling and NFP model training can be performed in dif-
ferent ways. When using a specific variability language, there are
limitations to the expressiveness concerning NFP-related data. TVL,
VELVET, and ClaferMoo, for example, only support a small set of
possible types and interactions of attributes. However, different
methods for predicting NFPs may not fit well into these restricted
implementations. In [12] a tool is used to generate NFP data with
expressions that cover interactions between features. Another ap-
proach presented in [9] uses CART to predict the accuracy of config-
urations. Other methods, such as our RMT approach or even neural
networks, could be used for the same effect. Keeping the NFP model
separate from the variability model would allow changes to the
NFP model at any time, without being limited by the requirements
of the variability modeling language.

With these concerns in mind, we argue that a separation between
variability model and NFP model is necessary.

4 COMPARISON

To support our arguments regarding model accuracy, we now com-
pare an integrated feature-wise annotation method (i.e., NFP at-
tributes integrated into the variability model) with two kinds of
separate NFP models: Classification and Regression Trees (CART)
and Regression Model Trees (RMT).

4.1 Investigated product lines

We examine non-functional properties of six different real-world
software product lines.

The busybox multi-call binary is a software suite that provides
an assortment of common Unix utilities within a single binary.
It is specifically designed for use in embedded Linux appliances.
Its variability model allows the selection of various utilities to be
included in the binary, and configuring the features of each utility.
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BUF_BSS? BB_CRYPT? BOOTCHARTD? BC_INT?

Figure 2: Excerpt of a Classification and Regression Tree
(CART) model for busybox RAM usage. Each node holds a
boolean decision related to a product line feature. Leaf nodes
(not shown) express the NFP value for the partial configura-
tion defined by the path from the root to the leaf.

We examine its binary size and static RAM usage (i.e., data and BSS
segment size).

Kratos and Multipass are in-house research operating system
product lines tailored towards heavily resource-constrained em-
bedded systems. They can be configured to support various micro-
controller platforms and common peripherals. We model text and
data/BSS segment size.

MxKernel extends Kratos’ approach to the domain of heteroge-
neous many-core systems. Its primary focus is on scalability and
speed in high-performance database applications. Again, we are
interested in text and data/BSS segment size.

The resKIL agricultural Al product line aims to support develop-
ers in achieving optimal Al performance on low-power embedded
devices, with variable hardware platform, Al platform, Al architec-
ture, and runtime settings. Here, we examine inference accuracy,
latency, throughput, and memory usage.

Finally, x264 is a well-known open source library and tool for
encoding video streams in the H.264/MPEG+4-AVC codec. It pro-
vides many tunables that affect the trade-off between video quality,
encoder speed, and output file size. We measure encoding duration
and output file size.

We note that, in contrast to the majority of related work, we
configure both boolean feature toggles and scalar configuration
options such as buffer sizes or encoder settings.

4.2 Evaluation setup

All evaluated product lines use the Kconfig language for variability
modeling. We used our automatic NFP model generation toolchain®
and Kconfig-frontends version 4.11.0 to create random configura-
tions for each product line, store configurations and corresponding
NFP measurements, and generate different kinds of NFP models.

Depending on the number of features, we generated and bench-
marked between 1,000 and 30,000 different configurations, and use
these for NFP model generation.

First, we extract a feature vector ¥ = (x,...,x) € N from
each Kconfig configuration. We map disabled boolean features and
scalars that cannot be configured due to unsatisfied dependencies

2 Available online: https://ess.cs.uos.de/git/software/dfatool
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Property | FW [%] | CART [%] | RMT [%] |
busybox size 1.6 0.3 0.3
busybox RAM 42.1 0.3 0.3
Kratos ROM 7.8 0.5 0.5
Kratos RAM 36.5 0.7 0.8
Multipass ROM 39.9 6.5 2.0
Multipass RAM 29.6 3.7 2.6
MxKernel ROM 0.5 0.5 0.9
MxKernel RAM 0.0 0.0 2.4
resKIL accuracy 16.5 12.4 14.8
resKIL latency 96.8 38.2 97.6
resKIL throughput 114.5 9.4 112.2
resKIL memory 81.1 21.1 93.7
x264 time 39.0 10.3 16.9
x264 size 96.8 2.0 57.9

Table 1: Symmetric mean absolute percentage error of
feature-wise annotation (FW) and regression tree (CART,
RMT) models for NFPs of the evaluated product lines.

to 0, enabled boolean features to 1, and configured scalar features
to their scalar value. We leave out string features.

In order to assess the accuracy of integrated feature-wise anno-
tation models that disregard feature interactions for the sake of
manageability, we use least squares regression to fit the formula
Po + Pi1x1 + -+ + Pnxp to our observations. This formula associates
each feature x; with a static annotation f; that expresses how en-
abling or (for scalar features) changing it affects the modeled NFP.

To assess separate models, we generate CART and RMT models
using the corresponding model generation algorithm. As tree-based
models have been shown to perform well when modeling non-
functional properties of software product lines, we consider these
to be suitable examples for this model variant[9]. Fig. 2 shows
an excerpt of a classification and regression tree for the busybox
product line. In all cases, we determine the generalization error
using 10-fold cross-validation.

4.3 Results

Table 1 shows the symmetric mean absolute percentage error
(SMAPE) for integrated feature-wise annotation (FW) and sepa-
rate NFP models (CART, RMT). Given predictions P = {p1, ..., pn}
and ground truth Y = {y1,...,yn}, it is defined as follows.

100% <~ |pi — yil
SMAPE(P,Y) = — ;m

2
First, our results confirm that separate models are better than

integrated feature annotations in all cases, with a two to ten times
lower model error in most cases — apart from MxKernel, where
separate and integrated models are equally good.

We also see that the flexibility offered by separate models pays off.
CART are well-suited for high-dimensional variability models using
mostly boolean features, whereas RMT tend to perform better when
faced with low-dimensional, scalar-heavy configuration spaces.
Consequently, CART exhibit the lowest error for the resKIL product
line, whereas RMT models are most accurate for Multipass.
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With integrated models, system designers would need to choose
a suitable NFP model right from the start, whereas separate models
allow changing the model type and re-training it at any time.

To assess whether modeling pairwise or more complex feature
interactions would improve the accuracy of the integrated model,
we examine the classification and regression tree model for busybox
RAM usage (see Fig. 2 for an excerpt). The tree has been automat-
ically generated by the CART algorithm, which means that the
closer a feature is to the root of the decision tree, the higher its
influence on the modeled NFP.

Top nodes include runtime sanitizers, debug build, disable com-
piler optimizations, and the buffer allocation policy. All of these are
cross-cutting concerns that have little effect by themselves, but
interact with nearly all other busybox features.

An integrated model would need to express this interaction
in hundreds of busybox features, making it complex and repeti-
tive. Although this comes with increased accuracy — for example,
when only considering non-debug builds with dynamically allo-
cated buffers, a feature-wise annotation model achieves a general-
ization error of just 3.6 % — once such complexity is needed, one
might as well use separate NFP models.

5 CONCLUSIONS

We have started this paper with the question whether a variability
modeling language should incorporate elements for handling NFP-
related concerns. The clear answer is no. Decades of software engi-
neering experience teach us the principle of separation of concerns.
We should obey it regarding this particular question as well. NFPs
depend completely on the implementation, i.e. the solution space of
a software product line, while variability modeling is typically done
in the problem space. Mixing both complicates the development
process. With clean separation, variability model and NFP model
can be chosen and changed independently.

We believe that the integration of NFP data into variability mod-
els was at the beginning merely a matter of practical use cases.
Configuration tools should be able to display NFP predictions — ide-
ally based on configurable features. However, over time it turned
out that such simple annotations are inaccurate and that more com-
plex models are needed. It makes no sense to follow this path until
users are no longer able to interpret the annotated formulae.

Instead, separate NFP models can provide accurate predictions
considering arbitrary feature interactions on the implementation
level. The configuration tool can link the variability model and the
NFP model, using the feature vector as the interface between both
sides. In recent months we have implemented such a configuration
tool, which combines Kconfig variability models with CART- and
RMT-based NFP models. It can answer “what if” questions, e.g.
“what is the expected frame rate if I toggle this boolean feature?”,
or help with more complex tasks such as feature recommendations
considering multi-objective optimization.
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