Performance is not Boolean: Supporting Scalar
Configuration Variables in NFP Models

Birte Friesel
birte.friesel@uos.de
Universitat Osnabriick
Osnabriick, Germany

ABSTRACT

Non-functional properties (NFPs) such as memory require-
ments, timing, or energy consumption are important charac-
teristics of embedded software systems and software product
lines (SPLs) in general. Both during system design and at run-
time, the goal is to optimize resource utilization (and, thus,
NFPs) by appropriate system configuration or orchestration.
NFP models, learned from benchmarks of various SPL con-
figurations, allow for the prediction of these properties, thus
enabling NFP-aware software configuration and runtime de-
cisions. However, many existing approaches for automated
learning of NFP models limit their scope to boolean variables.
We argue that this is no longer sufficient: NFP models must
accommodate scalar variables to achieve suitable accuracy
when faced with today’s highly configurable software sys-
tems and variable workloads. To this end, we evaluate four
regression tree-based NFP modeling approaches on eight use
cases, and examine model complexity and model accuracy.
We find that models with support for scalar variables achieve
up to three times lower mean model error when predicting
configurations that were not part of the training set. At the
same time, the complexity of scalar and boolean-only mod-
els is nearly the same; only benchmarking becomes more
time-intensive due to the need to explore scalar variables.
We conclude that scalar-enabled models provide increased
accuracy almost free of charge, and recommend using them
when generating NFP models for embedded systems and
workloads with scalar configuration variables.

KEYWORDS

Performance Prediction, Regression Model Trees, Software
Product Lines, Non-Functional Properties

1 INTRODUCTION

Models for non-functional system properties (NFP models for
short) have proven to be useful for system design in a wide

l BY _SA 4.0 International License.

FGBS °22, March 17-18, 2022, Hamburg, Germany
© 2022 Copyright held by the authors.
https://doi.org/10.18420/fgbs2022f-03

Except as otherwise noted, this paper is licensed un-
der the Creative Commons Attribution-Share Alike

Olaf Spinczyk
olaf@uos.de
Universitat Osnabriick
Osnabriick, Germany

area of use cases. Given a system (or product-line) configura-
tion, they provide estimates for attributes such as ROM/RAM
utilization, data processing throughput, or energy require-
ments. Having NFP models at hand allows system designers
to estimate system properties before building or using it,
compare different solutions, and even automatically config-
ure system components to optimize relevant NFPs [9, 15].
Similarly, operating systems for heterogeneous many-core
environments can use NFP-aware scheduling algorithms to
automatically execute tasks on appropriate hardware [5].

However, NFP models do not appear out of thin air: gener-
ating them requires a formal variability model, a translation
of configuration variables to feature vectors X that are used
as model input, and benchmarks of various system configu-
rations that can be used to learn the model. In the world of
software product lines (SPLs), feature vectors are still often
considered to be boolean [10], resulting in an NFP model
f:{0,1}" — R. While this allows for simple, efficient sam-
pling methods [4, 6], it disregards the influence of scalar
variables. Although approaches with support for scalar vari-
ables exist [13], to our knowledge, all of them require scalar
variables to be well-defined (x; € R for all variables x; in all
measurements). In practice, however, scalar variables may
be undefined in some configurations. This can happen when-
ever a scalar variable configures details of an optional feature:
if the feature is disabled, there is nothing to configure, so the
scalar variable has no value (x; = L1).

Considering this, and aspects such as the impact of buffer
sizes on RAM usage, or the number of available cores on
parallel workload performance, we argue that accurate NFP
models need to handle (possibly undefined) scalar variables,
resulting in an NFP model f : (RU{L})" — R. To assess this,
we generate and evaluate eight NFP models with and with-
out scalar variable support for four different applications:
ROM/RAM usage of the embedded research operating sys-
tems Kratos and Multipass, ROM/RAM usage of the busybox
multi-call binary, and encoding duration as well as output
file size of the x264 video codec. All of these are highly con-
figurable.

We examine NFP models using classification and regres-
sion trees (CART) with and without scalar variable support,
linear model trees (LMT) with scalar variable support, and a

https://orcid.org/0002-0688-9440
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/fgbs2022f-03

FGBS ’22, March 17-18, 2022, Hamburg, Germany

Table 1: Number of benchmark samples and
boolean/integer variables in feature vectors of
evaluated applications.

Application ‘ # Samples ‘ # Boolean # Scalar

Busybox 2,000 1,001 17
Kratos 30,085 70 3
Multipass 16,761 125 4
x264 3,646 9 4

custom CART extension, regression model trees (RMT). We
contribute a definition of RMT, and a comparison of boolean-
only and scalar-aware model accuracy and complexity for the
aforementioned use cases. Using these observations, we show
that NFP models with support for scalar variables achieve up
to three times lower model error when predicting configura-
tions that were not part of the training set than boolean-only
models, with nearly identical model complexity.

In the next section, we give a brief introduction to the four
applications and their boolean and scalar configuration vari-
ables. We then introduce CART, LMT, and RMT in section 3,
and provide evaluation results in section 4. After presenting
related work in section 5, we conclude in section 6.

2 FEATURE EXTRACTION

All four applications use the Kconfig language for configura-
tion and variability modeling, and can therefore be treated as
software product lines [14]. Busybox, Kratos, and Multipass
are instances of embedded software systems, whereas x264
video encoding is a parallel computing workload.

The Kconfig language offers five types of variables: bool,
tristate, string, hex, and int. Each variable may have depen-
dencies on other variables; if a variable’s dependencies are
not met, it is not visible and cannot be configured. Tristate
variables are used in the Linux kernel to distinguish between
disabled, enabled, and module features. Our product lines do
not use them, and we therefore do not consider them. We
also ignore string variables.

For boolean-only NFP models, we simply build a feature
vector X € {0, 1}" out of the n bool variables present in the
configuration. If a variable x; is selected, we set x; = 1; if
it is deselected or invisible, we set x; = 0. We ignore scalar
variables.

For scalar-aware NFP models, we build a feature vector
X € (RU{L})" out of the n bool, hex, and int variables
present in the configuration. We handle boolean variables as
above, and set hex and int variables to their respective scalar
configuration value. If a scalar variable x; is invisible, it does
not have a well-defined value, so we set x; = L.

Birte Friesel and Olaf Spinczyk

X3 = 0?
yesxl =0? yeSX2 =0?
plxixs) p(exs) plxexs) p(xexs)

Figure 1: A regression tree. Each leaf holds a constant
model ; for the corresponding partial system configu-
ration.

All applications we use for evaluation purposes have more
boolean than scalar variables, though the ratio differs. Table 1
shows the number of benchmark samples and feature vector
components.

3 REGRESSION TREES

We first introduce the common regression tree data structure,
and then present the (DE)CART, LMT, and RMT generation
methods used in this paper. All of them use a set of bench-
mark observations S = {y1, ys, . . . } and corresponding fea-
ture vectors X;, Xs, . . . to learn a model function f : M — R.
When describing model generation, we use x; to refer to the
i-th feature vector element (i.e., the i-th boolean or scalar
Kconfig variable).

3.1 Data Structure

Regression Trees (also known as Classification and Regression
Trees, or CART) have been introduced in 1984 and continue
to be relevant to this day [2]. Formally, they express a func-
tion f : M — R by means of a binary decision tree, for an
arbitrary set M.

Each non-leaf node holds a binary decision, and each leaf
defines the function output for the partial configuration de-
scribed by the path from the root to the leaf. The function
result f(X) is determined by following the decisions from
the root until ending up in a leaf, and then returning the leaf
value. Due to the binary decisions involved in each node, it
is well-defined for any input X € M.

Fig. 1 shows an example CART for a binary variability
model with M = {0, 1}3. In this case, leaf values p(- - -) are
the arithmetic mean of the corresponding benchmark obser-
vations.

3.2 Boolean CART

CART are generated top-down by greedily selecting splits
that minimize the loss (i.e., model error) until a stop criterion
is reached or no further variables can be split on [2]. Each
leaf holds a static value, resulting in a piecewise constant
function f : {0,1}" —» R.

Performance is not Boolean: Supporting Scalar Configuration Variables in NFP Models

We now outline the generation algorithm for binary-only
CART. As these allow for efficient sampling, they are also
known as data-efficient CART, or DECART [4].

(1) If a stop criterion is satisfied: return a leaf node using
the mean of observed data y(S) as model value.

(2) Split S into partitions S; (with x; = 1) and S; (with
x; = 0) for each variable index i.

(3) Associate each partition with a static model using
the arithmetic mean of corresponding observations:
p(xi) = p(Si) and p(x;) = p(Si).

(4) Select the variable x; with the lowest loss (i.e., model
error) and transform it into a decision tree node.

(5) Repeat recursively with S; and S; to generate child
trees.

Stop criteria may be user-specified thresholds for the num-
ber of samples |S| or sample standard deviation o (S), or tree
depth and size limits. These are meant to reduce the risk of
overfitting. A common loss function is the sum of squared
residuals:

Dy -)P+ Y (y - p()?

yeS; yEST

3.3 Scalar CART

DECART are a special case of (scalar) CART, and scalar CART
generation works in a similar manner [2].

(1) If a stop criterion is satisfied: return a leaf node using
the mean of observed data p(S) as model value.

(2) For each variable index i, let T; = {t;1,ti2, ... } be the
ordered set of its unique values.

(3) Split S into partitions S; j left (With x; < t;;) and S; j right
(with x; > t; ;) for each pair (x;, ¢; ;).

(4) Associate each partition with a static model, as above.

5) Select the pair (x;, t; ;) with the lowest loss and trans-

p .J

form it into a decision tree node “x; < Lt o

(6) Repeat recursively with S; ; jet and S; ;. right-

Loss function and stop criteria remain unchanged. The
result is a piecewise constant function f : R — R.

In our case, the input set is (RU {_L})"™. Therefore, in steps
2-5, we only consider variables x; with L ¢ T;. As {0,1} C R,
the algorithm can handle both boolean and scalar variables.

3.4 Linear Model Trees

Linear Model Trees (LMT) are an extension of CART. They
also rely on decision trees, but use both static values and
linear functions in leaves [11]. This allows them to express
piecewise linear functions and capture the influence of scalar
configuration variables.

For instance, the model tree in Fig. 2 describes the output
file size after encoding a specific input file with x264. If

FGBS 22, March 17-18, 2022, Hamburg, Germany

X1:O?

NG

p(x1) a+bx;

Figure 2: A linear model tree. Each leaf holds a constant
model ;1 or a linear model a + bx; +cx; +---.

constant bitrate encoding (x; € {0, 1}) is enabled, it depends
on the configured target bitrate (x; € R). Otherwise, in this
example, it is constant. We note that x; = 0 implies x, = L,
as variable bitrate encoding does not use a target bitrate.

Model tree generation works by building a CART and
using a bottom-up pruning algorithm combined with lin-
ear regression analysis to transform sub-trees into linear
functions. Details of the pruning algorithm vary between
publications; we refer to the M5 algorithm for details and
an example [16].

3.5 Regression Model Trees

Our custom Regression Model Tree (RMT) approach is an
extension of CART as well, but not limited to linear functions.
Instead, we first generate a decision tree according to the
DECART algorithm (only considering boolean configuration
variables in tree nodes), and then use a fitted function set
algorithm to find and fit functions for each leaf node. The
result is a decision tree expressing a piecewise continuous
function.

The fitted function set algorithm automatically generates
functions to express complex linear and non-linear effects of
scalar configuration variables. It uses statistical analysis to
determine relevant configuration variables, and multi-step
regression analysis to find and fit an appropriate function.
We originally developed it for energy model generation, and
found that it also works well when faced with software-
centric NFP models. We refer to our previous work for de-
tails [3].

4 EVALUATION

We examine model accuracy and complexity by generating
DECART, CART, LMT, and RMT models for all eight use
cases. To this end, we first generate a set of observations
S for each application by means of random sampling with
neighbourhood exploration, and then pass it to the respective
model generation algorithms.

Our RMT implementation builds upon the DECART algo-
rithm from the literature [4]. It handles undefined variables
as described in section 3.3. For LMT generation, we use an
external open-source implementation! whose maximum tree

Uhttps://github.com/cerlymarco/linear-tree

https://github.com/cerlymarco/linear-tree

FGBS ’22, March 17-18, 2022, Hamburg, Germany

Table 2: Symmetric Mean Absolute Percentage Error (SMAPE) and tree depth of static, regression tree, linear model

tree, and regression model tree-based NFP models with 10-fold cross validation.

Birte Friesel and Olaf Spinczyk

SMAPE [%] Tree depth
Application Static DECART CART LMT RMT | DECART CART LMT RMT
Busybox ROM 92.6 0.3 0.3 - 0.3 158 162 - 163
Busybox RAM 142.4 0.2 0.2 - 0.3 159 163 - 164
kratos ROM 41.9 0.5 0.5 0.5 0.5 36 36 5 36
kratos RAM 834 0.8 0.8 0.8 0.8 34 34 5 34
multipass ROM 76.8 6.5 6.6 129 2.0 44 44 20 38
multipass RAM 57.1 3.7 3.7 19.8 2.6 37 37 20 28
X264 time 48.0 45.5 22.6 21.1 169 7 18 20 10
x264 size 105.7 97.9 87.9 92.1 579 7 17 20 10

depth is hardcoded to 20. We use the implementation pro-
vided in the Python3 scikit-learn package for CART and
DECART. Both do not support undefined variables, so we
leave them out during model generation. Apart from the
hard-coded LMT limit, we do not configure stop criteria.

4.1 Sampling

We use kconfig-conf --randconfig to generate random
configurations, and measure their NFP values. For each ran-
dom configuration, we additionally toggle each individual
(visible) boolean configuration variable, and take five equidis-
tant samples from the allowed range of each linear config-
uration variable. For each of these samples, whose config-
uration differs from the original (randomly generated one)
in precisely one variable, we also run a benchmark. With
np boolean and n; scalar configuration variables, this results
in up to np, + 5n; measurements per random configuration,
depending on constraints imposed by Kconfig dependencies.

For busybox, we further decrease the sample size by taking
2,000 random samples from the set of observations generated
using random sampling with neighbourhood exploration. In
all other cases, we pass the entire set of observations to the
model generation algorithms. We deliberately do not attempt
to perform data-efficient sampling, as we want to focus on
model accuracy alone.

4.2 Results

We assess model accuracy by performing configuration-aware
10-fold cross validation: we partition observations into ten
pairs of (mutually exclusive) training and validation sets
based on their feature vector ¥. So, X; # X, for any pair of
training sample (with configuration X;) and validation sam-
ple (with configuration X,). This ensures that the validation
set only contains system configurations that were not part
of the training set.

We calculate the symmetric mean absolute percentage er-
ror (SMAPE) for each regression tree model as well as for a
static model that simply uses p(S) for prediction. Given pre-
dictions P = {p1,...,pn} and ground truth Y = {y1,...,yn},
SMAPE is defined as follows.

n |pil+lyil

2

Table 2 shows the mean model error with cross validation.
We see that the prediction error of regression model trees
is up to three times lower than the boolean-only DECART
variant for two of four applications, and nearly identical for
busybox and kratos. CART are better than DECART in one
application. In case of busybox, the LMT implementation
we used was unable to generate a regression tree; for multi-
pass, it performs worse than both scalar and boolean-only
models. So, RMT generally outperform their boolean-only
counterpart if scalar variables play a large role (multipass,
x264), and do not impair model performance when scalar
variables are not important (busybox, kratos). They achieve
the lowest model error, followed by CART. On the model
complexity side, we see that linear model trees are by far the
smallest, but also often the least accurate NFP model. CART
and RMT, on the other hand, are only slightly more complex
than the boolean-only DECART model. In case of multipass,
RMT are both more accurate and more compact. As such, we
conclude that the increase in accuracy gained by respecting
scalar variables does not lead to significantly more complex
models.

100% < i — Ui
SMAPE(P, Y) = > 1pi = bil
i=1

5 RELATED WORK

Researchers in the field of energy modeling have been con-
sidering scalar configuration variables for a long time, and
frequently show their importance [1, 17]. When it comes
to software-centric NFP models, this appears to be a rare
case [10].

Performance is not Boolean: Supporting Scalar Configuration Variables in NFP Models

The most prominent example we are aware of is the work
by Siegmund et al., presenting an approach for efficient sam-
pling and accurate model generation with boolean and scalar
variables [13]. However, their model relies on linear regres-
sion, which - to the best of our knowledge - is incapable of
handling variables that may be undefined.

FLASH, on the other hand, combines data acquisition
with multi-objective optimization [8]. It uses CART with
boolean and scalar variables internally, but focuses on op-
timization, not NFP model generation: optimization goals
must be known beforehand.

On the regression tree side, linear model trees are known
to be a suitable modeling method for boolean and scalar
inputs [7]. A recent software fault prediction study uses
them to achieve 5 to 50 % model error [12]. This is similar to
our results.

Fourier Learning is an entirely different approach [18]. In
contrast to previously mentioned works, it provides guaran-
teed accuracy bounds, but requires a large amount of samples.
It is limited to boolean feature variables.

6 CONCLUSION

In an evaluation of four different applications, we have shown
that scalar configuration variables can be an important as-
pect when modeling non-functional properties of embedded
software systems and compute workloads, even if most vari-
ables are boolean. RMT and CART models that respect scalar
variables achieve an up to three times lower model error
than regression trees without support for scalar variables
and show negligible additional complexity. Our own regres-
sion tree variant, regression model trees (RMT), consistently
achieves the lowest model error.

Regression model trees are able to handle partially unde-
fined scalar variables with ease. Even if all scalar variable
are undefined in at least one benchmark, each split during
tree generation decreases the sample size. In our experience,
this, combined with the dependencies between boolean vari-
ables and scalar variables in Kconfig files, means that lower
tree levels are not impacted by undefined variables. Typi-
cally, once a few boolean variables have been handled, each
scalar variable in the remaining sample set is either defined
in all measurements (and therefore usable) or undefined in all
measurements (and therefore irrelevant). As such, all scalar
variables can contribute to model accuracy.

Although sampling with support for scalar variables is
more time-consuming than benchmark generation for boolean-
only configuration spaces, we consider the gain in model
accuracy to be worth the effort. Considering the existing ap-
proaches to improve sampling in both cases, we are hopeful
that data-efficient sampling and accurate, scalar-aware NFP
models are not mutually exclusive.

FGBS 22, March 17-18, 2022, Hamburg, Germany

REFERENCES

[1] Gautier Berthou, Kevin Marquet, Tanguy Risset, and Guillaume
Salagnac. 2020. Accurate Power Consumption Evaluation for Periph-
erals in Ultra Low-Power embedded systems. In 2020 Global Internet
of Things Summit (GIoTS). 1-6. https://doi.org/10.1109/GIOTS49054.
2020.9119593

[2] Leo Breiman, Jerome H Friedman, Richard A Olshen, and Charles J
Stone. 1984. Classification and regression trees. Routledge. https:
//doi.org/10.1201/9781315139470

[3] Birte Friesel, Markus Buschhoff, and Olaf Spinczyk. 2018. Parameter-
Aware Energy Models for Embedded-System Peripherals. In 2018 IEEE
13th International Symposium on Industrial Embedded Systems (SIES).
1-4. https://doi.org/10.1109/SIES.2018.8442096

[4] Jianmei Guo, Dingyu Yang, Norbert Siegmund, Sven Apel, Atrisha
Sarkar, Pavel Valov, Krzysztof Czarnecki, Andrzej Wasowski, and
Huiqun Yu. 2018. Data-Efficient Performance Learning for Config-
urable Systems. Empirical Softw. Engg. 23, 3 (June 2018), 1826-1867.
https://doi.org/10.1007/s10664-017-9573-6

[5] Simon Holmbacka and J6rg Keller. 2017. Workload Type-Aware Sched-
uling on big.LITTLE Platforms. In Algorithms and Architectures for
Parallel Processing, Shadi Ibrahim, Kim-Kwang Raymond Choo, Zheng
Yan, and Witold Pedrycz (Eds.). Springer International Publishing,
Cham, 3-17.

[6] Pooyan Jamshidi, Miguel Velez, Christian Késtner, and Norbert Sieg-
mund. 2018. Learning to Sample: Exploiting Similarities across En-
vironments to Learn Performance Models for Configurable Systems.
In Proceedings of the 2018 26th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of
Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE 2018).
Association for Computing Machinery, New York, NY, USA, 71-82.
https://doi.org/10.1145/3236024.3236074

[7] D. Malerba, F. Esposito, M. Ceci, and A. Appice. 2004. Top-down
induction of model trees with regression and splitting nodes. IEEE
Transactions on Pattern Analysis and Machine Intelligence 26, 5 (2004),
612-625. https://doi.org/10.1109/TPAMI.2004.1273937

[8] Vivek Nair, Zhe Yu, Tim Menzies, Norbert Siegmund, and Sven Apel.
2020. Finding Faster Configurations Using FLASH. IEEE Transactions
on Software Engineering 46, 7 (2020), 794-811. https://doi.org/10.1109/
TSE.2018.2870895

[9] Rafael Olaechea, Steven Stewart, Krzysztof Czarnecki, and Derek Ray-
side. 2012. Modelling and Multi-Objective Optimization of Quality
Attributes in Variability-Rich Software. In Proceedings of the Fourth
International Workshop on Nonfunctional System Properties in Domain
Specific Modeling Languages (Innsbruck, Austria) (NFPinDSML ’12).
Association for Computing Machinery, New York, NY, USA, Article 2,
6 pages. https://doi.org/10.1145/2420942.2420944

[10] Juliana Alves Pereira, Mathieu Acher, Hugo Martin, Jean-Marc
Jézéquel, Goetz Botterweck, and Anthony Ventresque. 2021. Learning
software configuration spaces: A systematic literature review. Journal
of Systems and Software 182 (2021), 111044. https://doi.org/10.1016/].
jss.2021.111044

[11] John R Quinlan et al. 1992. Learning with continuous classes. In
5th Australian joint conference on artificial intelligence, Vol. 92. World
Scientific, 343-348.

[12] Santosh Singh Rathore and Sandeep Kumar. 2016. A decision tree
regression based approach for the number of software faults prediction.
ACM SIGSOFT Software Engineering Notes 41, 1 (2016), 1-6.

[13] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian
Kastner. 2015. Performance-Influence Models for Highly Configurable
Systems. In Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering (Bergamo, Italy) (ESEC/FSE 2015). Association

https://doi.org/10.1109/GIOTS49054.2020.9119593
https://doi.org/10.1109/GIOTS49054.2020.9119593
https://doi.org/10.1201/9781315139470
https://doi.org/10.1201/9781315139470
https://doi.org/10.1109/SIES.2018.8442096
https://doi.org/10.1007/s10664-017-9573-6
https://doi.org/10.1145/3236024.3236074
https://doi.org/10.1109/TPAMI.2004.1273937
https://doi.org/10.1109/TSE.2018.2870895
https://doi.org/10.1109/TSE.2018.2870895
https://doi.org/10.1145/2420942.2420944
https://doi.org/10.1016/j.jss.2021.111044
https://doi.org/10.1016/j.jss.2021.111044

FGBS ’22, March 17-18, 2022, Hamburg, Germany

(14]

(15]

[16]

for Computing Machinery, New York, NY, USA, 284-294. https://doi.

org/10.1145/2786805.2786845
Julio Sincero, Horst Schirmeier, Wolfgang Schréder-Preikschat, and

Olaf Spinczyk. 2007. Is The Linux Kernel a Software Product Line?.

In Open Source Software and Product Lines (SPLC-OSSPL 2007), Frank
van der Linden and Bj6rn Lundell (Eds.). Kyoto, Japan.

Julio Sincero, Wolfgang Schroder-Preikschat, and Olaf Spinczyk. 2010.

Approaching Non-functional Properties of Software Product Lines:
Learning from Products. In 2010 Asia Pacific Software Engineering
Conference. 147-155. https://doi.org/10.1109/APSEC.2010.26

Yong Wang and Ian H Witten. 1996. Induction of model trees for
predicting continuous classes. (1996).

[17]

(18]

Birte Friesel and Olaf Spinczyk

Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert P
Dick, Zhuoqing Morley Mao, and Lei Yang. 2010. Accurate online
power estimation and automatic battery behavior based power model
generation for smartphones. In Proceedings of the eighth IEEE/ACM/IFIP
international conference on Hardware/software codesign and system
synthesis. ACM, 105-114.

Yi Zhang, Jianmei Guo, Eric Blais, and Krzysztof Czarnecki. 2015. Per-
formance Prediction of Configurable Software Systems by Fourier
Learning (T). In 2015 30th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE). 365-373. https://doi.org/10.1109/
ASE.2015.15

https://doi.org/10.1145/2786805.2786845
https://doi.org/10.1145/2786805.2786845
https://doi.org/10.1109/APSEC.2010.26
https://doi.org/10.1109/ASE.2015.15
https://doi.org/10.1109/ASE.2015.15

	Abstract
	1 Introduction
	2 Feature Extraction
	3 Regression Trees
	3.1 Data Structure
	3.2 Boolean CART
	3.3 Scalar CART
	3.4 Linear Model Trees
	3.5 Regression Model Trees

	4 Evaluation
	4.1 Sampling
	4.2 Results

	5 Related Work
	6 Conclusion
	References

