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Abstract—The energy and timing behaviour of embedded com-
ponents such as radio chips or sensors plays an important role
when developing energy-efficient cyber-physical systems and IoT
devices. However, datasheet values generally have low accuracy
and may be incomplete, and performing new energy measure-
ments after each code or hardware configuration change is
time-consuming. While energy models – automatically generated
from benchmarks exercising all relevant device configurations
– offer a solution, they should have both low prediction error
and low complexity in order to be useful to humans as well as
energy simulations. With today’s increasingly complex devices
and drivers, generating compact and accurate energy models is
becoming harder due to non-linear effects and interdependencies
between configuration parameters. To address this issue, we
present Regression Model Trees. By combining software product
line engineering and energy modeling methodologies, these are
capable of automatically learning complex energy models from
benchmark data. Using energy and timing benchmarks on two
embedded radio chips and an air quality sensor, we show
that Regression Model Trees are both more accurate than
conventional energy models and less complex than state-of-the-art
approaches from the product line engineering community. Thus,
they are easier to understand and use for humans and algorithms
alike. We observe two- to 100-fold complexity reduction, and a
maximum energy model error of 6 % with cross-validation.

Index Terms—IoT, energy models, regression trees

I. INTRODUCTION

Many cyber-physical system components have a variety of
configuration options. Both software (e.g. operating systems
or mesh network protocols) and hardware (e.g. radio chips
or sensors) can be configured towards specific use cases and
trade-offs, with profound effects on energy requirements and
latency of individual operations.

While benchmarks of cyber-physical systems and IoT com-
ponents can capture these effects for a specific configuration
and use case, and allow for reasoning about which network
protocol or radio chip is most efficient in that specific applica-
tion, energy models are much more useful. By benchmarking
the energy behaviour in the entire configuration space and
learning an energy model from these observations, the result-
ing model can be used to estimate the energy properties of any
hardware configuration in any use case, thus eliminating the
need for repetitive benchmark runs. With appropriate models,
multi-objective optimization is also possible, e.g. considering
the influence of bit rate and transmit power on transmission
energy vs. expected packet loss [1].

Many energy modeling approaches rely on internal state
machines [2]. For example, a radio chip is either in a sleep,
idle, transmit, or receive state. They assume that the energy
behaviour of each state is either constant (i.e., the arithmetic
mean of observations) or can be expressed by a linear function
(which is fitted on observations by linear regression).

In practice, however, configuration options often have non-
linear and conditional effects. If a radio module is configured
for variable packet length, its transmission duration will be
a function of packet length (linear) and bit rate (inverse)
– otherwise, it is only a function of bit rate. Conventional
energy models cannot deal with these situations. We propose
to address this issue by combining two different approaches.

Fitted Function Sets are capable of automatically deter-
mining and fitting both linear and non-linear functions to
describe the energy behaviour of individual device states. We
have successfully used these for energy model generation in
the past [3]. However, they do not support interdependent
configuration variables with conditional effects.

Regression Trees are tailored towards high-dimensional con-
figuration spaces and naturally support interdependent config-
uration options [4]. They are frequently used in the software
product line engineering community to express the influence
of configuration options on non-functional properties such
as latency, memory usage, or energy. Extensions with linear
functions exist, but are not optimized for non-linear effects [5].

In this paper, we present Regression Model Trees: a combi-
nation of regression trees and fitted function sets that is able
to automatically generate compact and accurate energy models
for complex IoT devices. We contribute a formal definition of
regression model trees, and an evaluation of model accuracy
and complexity on two radio modules, an environmental
sensor, and an embedded AI application. Utilizing these, we
show that regression model trees fall within a sweet spot of
high accuracy (up to 6% model error for energy, and 18% for
non-energy attributes) and low complexity (up to 100 times
fewer tree nodes than regression trees), making them an ideal
choice for machine- and human-readable energy models.

Our open-source implementation of regression model
trees, benchmark data, and evaluation code are available at
https://ess.cs.uos.de/git/software/cpsiotbench-2022-artifacts.

In the next section, we introduce the various modeling
approaches related to this paper. We then present our con-
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Fig. 1. PPTA excerpt for an nRF24 radio transceiver with configurable data
rate, packet length, auto-ack, and auto-retry. Transmit power PTX and duration
TTX depend on hardware configuration x⃗. The transceiver automatically
switches from TX to IDLE once the time specified by TTX has passed.

tribution, regression model trees, in Section III, and provide
evaluation results in Section IV. After examining related work
in Section V, we conclude in Section VI.

II. MODELING METHODS

We cover state machines with configurable parameters, fitted
function sets, regression trees, and regression forests.

A. Parameterized Priced Timed Automata

In general, embedded devices are driver- and environment-
controlled state machines with distinct energy requirements
in each state. For instance, a radio chip typically has idle,
receive and transmit states as well as at least one low-power
sleep state. State transitions can be caused by driver function
calls, external events (e.g. packet received), or timeouts (e.g.
transmission complete) [6].

This makes Parameterized Priced Timed Automata (PPTA)
a natural choice for energy models. PPTA extend deterministic
finite automata with timers that can be reset by transitions and
cause other transitions when a timeout is reached, prices, and
parameters. In our case, prices are the power consumption
of each individual state. If desired, the duration and power
consumption of state transitions (i.e., driver function calls) can
be modeled as well.

Parameters capture the active hardware configuration. Each
driver function or interrupt may change configuration parame-
ters, and each power or timeout attribute is a function of these
parameters. Users need only specify the PPTA structure and
how function calls affect parameters; based on that, benchmark
generation and execution as well as energy model generation
can be performed automatically [6]. Fig. 1 shows a PPTA
excerpt for an nRF24L01 radio transceiver.

Now, the challenge is to automatically find suitable func-
tions for each power, duration, and timeout attribute. Given
configurations x⃗1, x⃗2, . . . ∈ Rn and a set S of corresponding
benchmark results y1, y2, . . . ∈ R, each function should be
able to accurately predict the energy consumption of previ-
ously unseen configurations, and not require manual interven-
tion during model generation. In the remainder of this section,
we examine regression methods that are suitable for this task.
We note that these can also be used to learn and predict
attributes that are not part of a PPTA, such as latency, size, or
memory requirements of embedded applications.

B. Fitted Function Sets

Regression analysis is a decades-old method of optimizing
(fitting) a function so that it learns to predict observations y
from input vectors x⃗ [7]. Given a function f(x⃗, β⃗), regression
algorithms adjust regression variables β⃗ so that the loss of
the error term εi = yi − f(x⃗i, β⃗) is minimal. A typical loss
function is the sum of squared residuals

∑
i ε

2
i .

Regression analysis is often used in energy models for
embedded devices [8]. For instance, consider the duration
of a radio transmission with packet length xpl and bitrate
xdr. After a constant set-up time, the radio module sends a
fixed-length preamble followed by variable-length data. So, a
suitable function is f(x⃗, β⃗) = β0 + β1

1
xdr

+ β2
xpl

xdr
.

One way of automatically determining such a function is
symbolic regression via genetic programming [9]. However,
this is prone to overfitting, and compensating for that is still
an active research area [10].

Fitted Function Sets (FFS) is a different approach that relies
on detection of relevant parameters and multi-step regression.
We have shown that this works well for energy model genera-
tion, while reducing the risk of overfitting [3]. Here, we briefly
outline the concept, and refer to our prior work for details.

1) For each parameter xi, partition S into subsets Ŝi in
which all xj with j ̸= i are constant, and subsets S̃ in
which all variables are constant.

2) If the mean standard deviation of Ŝi is at least twice
the mean standard deviation of S̃, xi is relevant. If no
variable is relevant, return the arithmetic mean µ(S).

3) For each relevant variable xi, fit each function candidate
on each partition Ŝi, and select the one with the lowest
loss, using the sum of squared residuals.

4) Build a model function f(x⃗, β⃗) using the power set of
the selected functions, and fit it on S.

Going back to the radio example, the individual functions
are (xpl, β⃗

′) 7→ β′
0 + β′

1xpl and (xdr, β⃗
′′) 7→ β′′

0 + β′′
1

1
xdr

. The
power set of xpl 7→ xpl and xdr 7→ 1

xdr
, combined with fresh

regression variables, is the model function:

f(x⃗, β⃗) = β0 + β1xpl + β2
1

xdr
+ β3

xpl

xdr

C. Regression Trees

Regression Trees (also known as Classification and Re-
gression Trees, or CART) have been introduced in 1984
and continue to be relevant to this day [11]. Formally, they
express a piecewise constant function f : Rn → R by
means of a binary tree. Each non-leaf node holds a binary
decision such as x1 ≥ 3, and each leaf holds a value defining
the function output for the configuration variable values or
intervals described by the path from the root to the leaf.

Fig. 2 shows an excerpt from a simplified regression tree
model for an air sensor’s power consumption. If the sen-
sor only performs temperature and humidity measurements
(xiaq = 0), the power is approximately constant. If it performs
air quality measurements (xiaq = 1), the power draw depends
on measurement time (xt) and internal heater temperature
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Fig. 2. Regression tree excerpt. Each leaf holds a constant model µ for the
corresponding partial system configuration.

(xheat, not shown). We note that CART work both with scalar
and boolean variables (here, xiaq ∈ {0, 1}).

Leaf values µ(· · · ) are the arithmetic mean of the corre-
sponding observations. For example, µ(xiaq < 1

2 ) is the mean
of all measurements with xiaq < 1

2 .
The key idea of CART generation algorithms is to try

different binary splits of the observations and greedily choose
the one yielding the highest model accuracy improvement.
This is repeated recursively until a stop criterion is satisfied.
We briefly outline the CART generation algorithm used in this
paper, and refer to Breiman et al. for details [11].

1) Let Ti = {ti,1, ti,2, . . . } be the set of unique values of
variable xi, with ti,j < ti,j+1∀j.

2) If a stop criterion is satisfied: return a leaf node using
the mean of observed data µ(S) as model value.

3) For each pair (xi, ti,j), split S into partitions Si,j,left
(containing only samples with xi ≤ ti,j) and Si,j,right
(xi > ti,j).

4) Select the pair (xi, ti,j) with the lowest loss and trans-
form it into a regression tree node “xi ≥ ti,j+ti,j+1

2 ?”.
5) Repeat recursively with S := Si,j,left (left child node)

and S := Si,j,right (right child node).
Common stop criteria are number of samples (|S| < T )

or standard deviation (σ(S) < T ) with a user-provided
threshold T , or tree size and depth limits. Properly chosen,
these minimize the risk of overfitting. Again, a typical loss
function is the sum of squared residuals:

∑
y∈Si,j,left

(y − µ(Si,j,left))
2 +

∑
y∈Si,j,right

(y − µ(Si,j,right))
2

We note that functions expressed by CART are well-defined.
For any configuration x⃗, there is a path from the root node to
an appropriate leaf node.

D. Linear Model Trees

Linear Model Trees (LMT) are an extension of CART. They
also rely on regression trees, but use both static values and
linear functions in leaves [5]. This allows them to express
piecewise linear functions Rn → R and better capture config-
uration parameters with linear influence on the model value.

The LMT fragment in Fig. 3 describes memory require-
ments of an embedded AI application. If an AI architecture
with batch processing support is used (xb = 1), memory usage
depends on batch size (xbs). Otherwise, it is constant.

xb ≥ 1
2?

a+ bxbsµ(xb <
1
2 )

no yes

Fig. 3. A linear model tree. Each leaf holds a constant model µ or a linear
model a+ bxi + cxj + · · · .

Model tree generation algorithms work by first building
a CART, and then using a bottom-up pruning algorithm
combined with linear regression analysis to transform sub-
trees into linear functions. Details vary; here we use an
implementation of the M5’ algorithm [12].

E. Tree Boosting

The last related approach, Extreme Gradient Boosting (an
implementation of tree boosting), is an ensemble learning
method. The model consists of a group (forest or ensemble)
F = {f1, f2, . . . fK} of regression trees instead of just a
single one. Each tree may have a different structure. The
model output is the sum of the individual tree models:
F(x⃗) =

∑K
i=1 fi(x⃗).

Learning accurate ensembles from training data is consid-
erably more challenging than for the previously presented
single-function models. Essentially, Extreme Gradient Boost-
ing (XGBoost) iteratively builds regression trees and adds
them to the forest. However, its CART algorithm uses a custom
loss function that greedily selects splits to reduce the forest’s
overall loss L. Thus, tree generation takes the accuracy of the
entire forest and not just the current tree into account.
L is a regularized loss function meant to penalize complex

forests and thus reduce the risk of overfitting. Given a non-
regularized function l, such as the sum of squared residuals,
an ensemble F = {f1, . . . , fK}, and observations y1, . . . , yn
of system configuration x⃗1, . . . , x⃗n, it is defined as follows.

L(F) =

n∑
i=1

l(F(x⃗i), yi) +

K∑
k=1

Ω(fk)

The regularization term Ω(f) calculates the complexity of
each tree f based on the number of leaves and leaf values.
We refer to Chen et al. for details [13].

III. REGRESSION MODEL TREES

While regression trees can learn piecewise constant or
linear approximations of arbitrary functions, this leads to large
models and has a considerable risk of overfitting, especially
when faced with noisy data. Fitted function sets, on the other
hand, cannot handle interdependent configuration parameters.

To address these issues, and obtain models that are both
compact and accurate, we propose Regression Model Trees
(RMT). These combine CART with fitted function sets to
express a piecewise continuous function f : Rn → R. Like
CART and LMT, they utilize regression trees, but support both
static values µ(· · · ) and fitted functions f(x⃗, β⃗) in leaves.
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Fig. 4. Regression model tree excerpt. Non-leaf nodes express boolean
decisions. Each leaf holds a fitted function set.

In order to obtain compact, easy-to-understand tree struc-
tures, we do not use LMT-style bottom-up pruning. Instead,
we first generate a CART that only splits on relevant boolean
variables (i.e., variables which have an effect on the standard
deviation of the observation set S). Then, we use FFS to
find and fit a function for each leaf. Given observations
S = {y1, . . . } of parameter vectors x⃗1, . . . , the algorithm is:

1) For each boolean variable xi: determine whether xi is
relevant for the current set S (see Section II-B).

2) If a stop criterion is satisfied, or no boolean variable xi

is relevant: return a leaf node containing a fitted function
set for S.

3) For each relevant boolean variable xi, split S into
partitions Si,left (containing only samples with xi = 0)
and Si,right (xi = 1).

4) Select the variable xi with the lowest loss and transform
it into a regression tree node “xi = 1?”.

5) Repeat recursively with S := Si,left (left child node) and
S := Si,right (right child node).

We use the same stop criteria as ordinary CART generation
(see Section II-C).

Fig. 4 shows an example RMT for the transmission time
of a radio module with configurable packet length and data
rate, and a “fixed packet length” switch. If fixed length is
enabled (xfl = 1), data rate (xdr) is the only variable affecting
the transmission time. Otherwise, both data rate and packet
length (xpl) determine how long a transmission takes.

IV. EVALUATION

We examine model accuracy (prediction error) and model
complexity (number of tree nodes) of regression model tree
(RMT), linear model tree (LMT), regression tree (CART), and
tree boosting (XGB) models. We consider three questions.

Q1: How accurate is model prediction for parameter com-
binations that were not part of the training set? Q2: Can the
models explain hardware behaviour at a level of complexity
suitable for human interpretation? Q3: Do RMT reach a sweet
spot of high accuracy and low complexity?

To answer these, we generate energy models for CC1200
and nRF24 radio transceivers and a BME680 air quality
sensor. We use PPTA-based benchmark generation to perform
measurements over the entire configuration space to avoid
accuracy issues caused by selective data acquisition [6].

Additionally, we repeat each measurement five to ten times.
This allows the model generation algorithms to distinguish
intermediate model loss caused by parameter-dependent hard-
ware behaviour from model loss due to measurement inac-

curacies and fluctuations in hardware behaviour. To assess
whether RMT are suitable for modeling properties other than
energy, we also generate a non-functional property model for
an embedded AI application.

For CC1200 and nRF24, we examine the duration (T ) and
power consumption (P ) of the transmit state (TX), and the
power consumption of the receive state (RX). We do not
present results for sleep and idle states, as we found their
power consumption to be independent of device configuration.
RX and TX, on the other hand, are both the most energy-
intensive and the most configurable device states. Configurable
parameters are packet length, transmit power, data rate, and
(for nRF24) fixed length packets, auto-retry, and auto-ack.

The BME680 sensor supports configurable oversampling
of temperature, humidity, and pressure readings, as well as
optional air quality (IAQ) measurements by means of a
heated metal oxide layer with configurable measurement time
and temperature. We examine the power consumption of its
measurement state.

For the AI application, we examine inference throughput
and memory usage as a function of AI architecture identifier,
AI inference platform, batch size, quantization settings, and
hardware platform.

A. Model Accuracy

We determine the generalization error (i.e., model error
when predicting unseen configurations) by performing 10-fold
parameter-aware cross-validation. To this end, we partition
observations into training and validation sets not based on their
position in the set of observations S, but on their configuration
vector x⃗. This ensures that x⃗t ̸= x⃗v for any pair of training
set entry (with configuration x⃗t) and validation set entry (x⃗v).
So, the validation set only contains parameter combinations
that were not part of the training set.

We use two additional models to put accuracy figures into
perspective. The static model serves as upper bound for predic-
tion error: it does not care about parameter vectors and simply
uses µ(S) for prediction. The LUT (look-up table) model
serves as lower bound. It partitions observations by parameter
vector into sets S1, S2, . . . so that ∀k : ∀yi, yj ∈ Sk : x⃗i = x⃗j .
When the model value for a parameter vector x⃗ is requested, it
selects the set Sk with matching parameter vectors, and returns
µ(Sk). We do not use cross validation for the LUT model, as
it is incapable of predicting unseen configurations.

We use the symmetric mean absolute percentage error
(SMAPE) metric to determine model error. Given predictions
P = {p1, . . . , pn} and ground truth Y = {y1, . . . , yn}, it is
defined as follows.

SMAPE(P, Y ) =
100%

n

n∑
i=1

|pi − yi|
|pi|+|yi|

2

Table I shows the mean model error for ten different pairs
of training and validation sets. We see that RMT, LMT, CART,
and XGB accuracy is nearly the same (and close to the lower
error bound) in many cases. The only notable exception for



TABLE I
SYMMETRIC MEAN ABSOLUTE PERCENTAGE ERROR (SMAPE) OF

STATIC, LUT, AND REGRESSION MODELS WITH 10-FOLD CROSS
VALIDATION.

Attribute Static LUT RMT LMT CART XGB
BME680 P 82.5 2.4 5.5 4.7 6.6 5.5
CC1200 TX T 88.4 0.1 0.1 0.1 0.1 0.2
CC1200 TX P 12.5 0.1 0.8 0.8 1.3 1.1
CC1200 RX P 0.3 0.0 0.1 0.0 0.0 0.1
nRF24 TX T 103.2 0.1 0.4 20.2 0.2 0.2
nRF24 TX P 39.3 0.1 6.2 8.2 2.3 1.4
nRF24 RX P 2.2 0.0 0.0 0.0 0.0 0.1
AI Memory 79.9 1.1 18.1 41.7 21.0 16.9
AI Throughput 87.9 3.6 12.5 94.2 9.4 10.8

energy modeling is nRF24 TX power, where CART and XGB
are better, while LMT perform worse. Still, the generalization
error of RMT is no more than 6.2%.

In the (non-energy) AI use case, we see that both RMT and
XGB achieve a low (but far from ideal) prediction error for
memory usage, whereas CART and XGB are slightly better
for throughput. In both cases, RMT achieve a generalization
error of no more than 18%.

We do not show fitted function set results in the table due
to lack of space. For all CC1200 attributes, and nRF24 RX
P , they have the same model error as RMT. For all other
attributes, they are incapable of generating a function model,
and have the same prediction error as the static model. We
found no case where conventional linear regression performed
better than the fitted function set approach.

Regarding Q1, we conclude that regression model trees
achieve a much lower energy model error than fitted function
sets, and that regression model trees as well as CART and
XGB achieve close-to-optimal model accuracy in almost all
of our benchmarks. We find non-tree models to be unsuitable
for energy models of highly configurable embedded devices.

Although RMT do not appear to be an ideal choice for
complex non-energy models, they still achieve reasonable
performance in that case. Next, we examine model complexity.

B. Model Size

Table II shows the model size after training on all mea-
surements (without cross-validation). For energy models, we
see that regression model trees are clearly the most compact,
generating a single-node tree for CC1200 attributes as well as
nRF24 RX power, and less than ten nodes in all other energy
modeling use cases. We note that a single-node RMT is no
different from a fitted function set model.

Linear model trees are slightly larger, with 10 to 20 nodes.
As LMT approximate non-linear functions by means of linear
functions and decision trees, this is not surprising. Both RMT
and LMT are small enough to be understandable by humans.

CART, which must approximate both non-linear and linear
functions by mean of piecewise constant tree structures, are
five to 100 times larger than LMT. Forests generated by XGB
are larger still. In this size range, with hundreds to thousands
of tree nodes, attempting to understand hardware behaviour
by looking at the tree structure is a futile endeavour.

TABLE II
SIZE (NUMBER OF NODES) OF REGRESSION TREE-BASED MODELS.

Attribute RMT LMT CART XGB
BME680 P 7 13 959 5,398
CC1200 TX T 1 15 379 1,646
CC1200 TX P 1 11 419 1,716
CC1200 RX P 1 13 69 52
nRF24 TX T 7 15 1,359 2,754
nRF24 TX P 5 13 1,823 5,254
nRF24 RX P 1 17 141 80
AI Memory 1,706 13 10,381 79,192
AI Throughput 1,395 13 10,381 42,028

Overall, for Q2, we find that RMT and LMT can explain
energy behaviour at a level of complexity suitable for humans,
while CART and XGB cannot. For non-energy attributes,
although RMT are ten times smaller than CART and XGB,
only LMT are small enough.

C. RMT Performance

When modeling energy behaviour, RMT exhibit a gener-
alization error of less than 7%, using trees with less than
ten nodes and just one to four different variables in leaves.
While there is one case where increased model complexity
leads to higher accuracy (nRF24 TX power), this is not a
general finding. For instance, no matter whether using seven
or more than 5,000 nodes, all four modeling methods have
difficulties when faced with BME680 power.

Thus, for energy models, we answer Q3 with a definitive
Yes: RMT have the lowest complexity of all evaluated mod-
eling methods, while still providing high (and, in most cases,
close-to-optimal) accuracy.

For non-energy models, LMT are least complex, but also
by far the least accurate method. Although RMT achieve
reasonable accuracy, at more than 1,000 tree nodes, they are
not well-suited for human analysis. So, we may not have found
the sweet spot for non-energy models yet.

V. RELATED WORK

We have already examined fitted function sets [3], regres-
sion trees [11], linear model trees [14], and extreme gradient
boosting [13]. In our opinion, next to regression model trees,
these are the most useful energy modeling methods for em-
bedded devices.

CART and LMT are often used for modeling non-functional
properties of software product lines [15]. For example, a
boolean-only CART variant is capable of modeling various
attributes of products such as the apache web server or
the x264 video encoder with an error of less than 10%,
while requiring only a small amount of benchmark data [4].
However, its data-efficient sampling method was designed for
boolean-only configuration spaces, and may therefore not be
suitable for energy models.

Similarly, linear model trees have been used to predict
software faults based on software quality attributes with 5 to
50% model error [16].



Fourier Learning is an entirely different approach [17].
In contrast to the previous methods, it provides guaranteed
accuracy bounds, but at a cost: it requires a large amount of
samples, and the resulting models are unsuitable for interpre-
tation by humans. The exact number of required samples is a
function of the desired accuracy bound.

L2S, on the other hand, automatically detects correlations
between configurable features and hardware (or workload)
changes, and generates benchmark configurations accordingly.
Jamshidi et al. were able to achieve a model error of 7 to 20%
when modeling the latency of an AI application [18]. Their
approach uses CART for latency prediction, but has only been
tested with boolean configuration parameters.

Finally, Cherifi et al. propose using Changepoint Detection
to automatically generate state machines for embedded device
components, and handle parameter changes by means of
state transitions (i.e., one state for each parameter configu-
ration) [19]. This concept is similar to CART, and appears
to have the same drawbacks as well: generated models are
accurate, but quickly become so complex that they no longer
offer an intuitive grasp of hardware behaviour.

VI. CONCLUSION

We have presented Regression Model Trees (RMT), a
combination of regression trees and automatically-generated
regression functions. In an evaluation with three highly con-
figurable embedded devices, we have shown that energy
models using regression model trees are both accurate (with a
maximum generalization error of 6%) and compact (less than
ten tree nodes and simple regression functions). This makes
them an ideal choice for energy models that offer an intuitive
understanding of how configuration options affect hardware
behaviour. While RMT accuracy is also reasonable for non-
energy attributes, they have significant complexity in that case.

Additionally, we have found that regression trees (CART)
and gradient-boosted forests (XGB) can be more accurate than
RMT in some cases, but are also considerably more complex.
While unsuitable for human-readable energy models, they may
be useful when highest accuracy is needed.
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