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ABSTRACT
Professional energy measurement systems are expensive, especially
when it comes to systems usable for automated measurements. In
exchange, they provide a well-known measurement range, detailed
accuracy guarantees, and a computer interface. DIY solutions from
researchers have improved the situation considerably, with hard-
ware cost in the $100 range, but are typically not commercially
available. We are interested in even more affordable solutions, and
examine the capabilities of the “EnergyTrace” technology embed-
ded on the TI MSP430FR5994 LaunchPad, which is commercially
available for less than $20. Out of the box, we observe a maximum
error of 210 µA in the 100 µA to 10 mA range, but no support for
automatic model generation. With single-point calibration and a
custom synchronization and drift compensation algorithm, we are
able to further reduce the error to 53 µA and perform entirely auto-
mated measurements and energy model generation on 3.3V MCUs
and peripherals with a maximum timestamp error of 0.95 ms.

CCS CONCEPTS
• Hardware → Power estimation and optimization; • Soft-
ware and its engineering → Embedded software; • Computing
methodologies→ Modeling methodologies.
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1 INTRODUCTION
Energy models are a useful utility for designers of low-power em-
bedded systems, as they allow reasoning about the expected battery
lifetime or the required minimum energy-harvesting capabilities
for various usage scenarios even before the hardware has been
manufactured. They often take the form of functions or automata.
Functions provide the total power consumption of a system com-
ponent for a set of parameters such as radio transmit power or
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CPU sleep state [11]; automata describe the different states and
configurations a hardware device may be in, the corresponding
power consumption, and transitions between states [15]. Hybrid
models with configuration-dependent power functions for different
states and transitions are also possible [6].

However, lacking a repository of energy models for ultra-low-
power MCUs and peripherals, and faced with an often insufficient
level of detail in manufacturer datasheets, being able to generate
energymodels is equally important as knowing how to use them [7].
A high level of automation is desirable to increase reproducibility
and minimize cost and human error sources.

Model generation works by having a benchmark program exer-
cise (a sufficient subset of) all hardware configurations and gather-
ing energy traces while doing so. The energy readings are mapped
to the different configurations and distilled into functions and/or
automata. A hardware configuration is made up of hardware state
(e.g. receive, transmit, idle, or sleep) and configuration parameters
(e.g. transmit power, packet size, or screen brightness).

Mapping energy readings to configurations (i.e., identifying
benchmark events such as function calls and corresponding hard-
ware state changes in the traces) can be done manually by looking
for changes in the hardware’s energy behaviour. However, if two
consecutive hardware configurations have nearly identical energy
consumption, or the effects of a configuration change do not man-
ifest immediately, the resulting model may be inaccurate. In this
case, and also when performing automatic model generation, the
measurements must be augmented with synchronization signals
which can be used to determine configuration changes. Typically,
this is done by logging the state of an IO pin with each energy
sample, and having the benchmark toggle it to indicate changes.

In our experience with automating energy model generation for
embedded system components, measurement hardware which is
suitable for automatic model generation isn’t easy to come by. It
is often expensive, either in terms of money (hundreds to thou-
sands of dollars), or time (weeks spent building and evaluating a
measurement system tailored towards a specific task).

With hands-on student labs andwork-from-home setups inmind,
we are interested in less expensive alternatives, which do not re-
quire a custom design or substantial soldering skills, but still pro-
vide usable results. This led us to take a look at the EnergyTrace
technology embedded in TI’s MSP430 LaunchPad evaluation board
series, which are commercially available for less than $20. They aug-
ment a 16-bit ultra-low-power MSP430 MCU with programming,
debugging, and energy measurement capabilities – without any
additional hardware requirements. However, they do not support
the kind of synchronization signals typically used for automatic
model generation.

As we are not aware of publicly available accuracy figures, we
obtained them using MSP430FR5994 LaunchPads and present them
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Figure 1: An MSP430FR5994 LaunchPad (top) performing
energymeasurements of a BME680 air quality sensor (bottom
left). No further components are required.

in section 3. Additionally, we contribute a synchronization and drift
compensation algorithm usable with both EnergyTrace and similar
measurement devices without built-in synchronization support. We
show that, utilizing single-point calibration and our synchroniza-
tion technique, automatic energy model generation is possible with
maximum errors of 53 µA and 0.95 ms, at a cost of less than $20.

The next section gives an overview of EnergyTrace’s measure-
ment concept and software ecosystem. We evaluate its energy mea-
surement accuracy in section 3, and follow up with our synchroniza-
tion method in section 4. After looking at related work in section 5,
we conclude in section 6.

2 ENERGYTRACE
EnergyTrace is made up of two parts: The control and measurement
circuitry and firmware on the LaunchPad, and a client library.

2.1 Hardware
An MSP430FR5994 LaunchPad consists of three MSP430 MCUs: the
MSP430FR5994 itself (target MCU), an MSP430F5528 (host MCU)
connected to the microUSB port for programming, debugging,
and USB-to-UART conversion, and an MSP430G2452 (EnergyTrace
MCU) connected to a DCDC converter [13]. Fig. 1 shows a Launch-
Pad performing measurements on a BME680 air quality sensor. The
EnergyTrace MCU and DCDC converter are located in the bottom
right PCB corner, the MSP430FR5994 target MCU is in the middle.

The DCDC converter is responsible for converting 5V, provided
via USB, to 3.3V for the MSP430FR5994 target and its peripherals.
Essentially, it is an inductive charge pump, as shown in Fig. 2: an
inductor (L) and capacitor (C) store energy and provide it to the con-
sumer (+3V3). A controller (MSP430) operates a transistor switch
(Q) between the inductor and the 5V supply voltage to provide a
recharge pulse to the inductor whenever the output voltage drops
below a threshold. Pulse width and threshold are configured so that
the output voltage is regulated in a tight range around 3.3 V.

Each recharge pulse transfers a constant amount of energy,
𝐸pulse, which the firmware calibrates with three on-board resis-
tors (2.2, 3.3, and 6.8 kΩ, corresponding to 0.485, 1.0, and 1.5 mA)

Figure 2: Simplified schematic of the EnergyTrace DCDC con-
verter [13]. The MSP430 EnergyTrace MCU forms a feedback
loop by monitoring the output voltage (+3V3) and regulating
the inductor L (using transistor Q) in response to it.

before each measurement sequence. The amount of energy trans-
ferred in a time interval is #pulses · 𝐸pulse [5, 13]. A similar method
has been used in 2008 by iCount [4].

Counting charge pulses has a major advantage over more preva-
lent shunt-based circuits, which measure current by monitoring
the voltage drop over a shunt resistor. Shunt-based methods can
only estimate the energy consumption by interpolation of current
measurements and may miss energy spikes which are shorter than
the measurement interval. To minimize the risk of this happening,
a high sample rate is required. Charge counting, on the other hand,
measures energy and not current. By design, it cannot miss spikes,
regardless of its sample rate.

The EnergyTrace-monitored 3.3V rail is not just connected to
the target MCU, but also available on 3V3 pins. Thus, any 3.3V-
compatible device can be connected to the EnergyTrace circuit
for measurements. The LaunchPad can also act as USB-to-UART
bridge by disconnecting the UART jumpers between host and target
MCU (visible in the middle of Fig. 1) and attaching an external
MCU instead. Disconnecting the MSP430FR5994 MCU entirely is
not possible, however – it must be present on the debug port for
EnergyTrace to work, so measurements will be offset by its sleep
mode current draw of about 2.4 µA (8 µW).

2.2 PC Software and USB Interface
EnergyTrace is meant to be used with TI’s Code Composer Stu-
dio or IAR Embedded Workbench IDEs, which is useful for de-
velopers, but not so much for automated measurements. Instead,
we rely on TI’s closed-source msp430 client library to provide an
API to EnergyTrace features, the open-source EnergyTrace CLI
energytrace-util1 for API access, and our own msp430-etv2

wrapper with additional post-processing and analysis features.
The API allows starting/stopping EnergyTrace measurements

and providing a callback function, which is called periodically to
handle new EnergyTrace readings. Measurements are passed as a
list of events; each event 𝑖 consists of a timestamp 𝑇𝑖 (32 bit, 1 µs
resolution), current 𝐼𝑖 (32 bit, 1 nA), voltage 𝑈𝑖 (16 bit, 1 mV), and
cumulative energy 𝐸𝑖 (32 bit, 100 nJ).

Cumulative energy is the amount of energy transferred since
the start of the measurement. By default, the target MCU is reset

1https://ess.cs.uos.de/git/software/energytrace-util
2https://ess.cs.uos.de/git/software/msp430-etv

https://ess.cs.uos.de/git/software/energytrace-util
https://ess.cs.uos.de/git/software/msp430-etv
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when starting a measurement, so it is identical to the energy used
for program execution.

As each measurement describes total time and energy usage up
to the corresponding timestamp, we calculate energy consumption
and duration for each pair of measurements. For measurement 𝑖 ,
we consider the interval [𝑇𝑖−1,𝑇𝑖 ] with

• duration Δ𝑇𝑖 = 𝑇𝑖 −𝑇𝑖−1,
• energy consumption Δ𝐸𝑖 = 𝐸𝑖 − 𝐸𝑖−1, and
• reported mean current 𝐼𝑖 .

The current 𝐼𝑖 is not measured by the EnergyTrace MCU, so it must
be calculated either on the LaunchPad or by the msp430 library.

3 BASELINE EVALUATION
We examine the credibility of values provided by the API in gen-
eral, and the accuracy of energy readings in detail. All measure-
ments were performed at room temperature on eight identical
MSP430FR5994 Rev 1.2 LaunchPads bought between 2016 and
2020, using firmware version 31200000 and libmsp430.so version
31200004. They were connected to a notebook computer, which
was being used for work close to the LaunchPads most of the time.

3.1 API Data
Preliminary tests indicated that the EnergyTrace firmware and/or
client library may perform post-processing (e.g. low-pass filtering)
of measurement properties before providing them via its API. We
assess this by comparing them with raw USB traffic.

3.1.1 Benchmark. Our benchmark program toggles one of the
LaunchPad’s on-board LEDs and writes a line to UART once per
second. It keeps the MCU in a low-power sleep state inbetween.
We used the Wireshark utility to monitor USB traffic between host
and LaunchPad while performing EnergyTrace measurements and
compare data reported by the API with raw USB data and the bench-
mark’s expected behaviour.

3.1.2 Observations. EnergyTrace data is transmitted in bulks of
five samples each at a rate of about 750 Hz (giving a mean sample
rate of 3.75 kHz). Each sample contains a timestamp, voltage, and
cumulative energy reading. UART data is buffered and flushed once
64 bytes have been accumulated or a timeout of at least 60 ms has
expired. Both EnergyTrace and UART transmissions use a low-
priority USB block transfer mode without real-time guarantees,
and are also sent over different USB endpoints. UART messages are
therefore not a suitable synchronization method.

EnergyTrace samples are not equidistant. Instead, the first sample
in a bulk transfer block typically has a difference of 400 µs to its
predecessor, whereas the remaining four mostly map to two clusters
around 210 and 270 µs, and outliers go up to 690 µs. See Fig. 3(a) for
a histogram of observed Δ𝑇𝑖 values. Timestamps also appear to be
transmitted with varying resolution. More than 99 % of durations
(Δ𝑇𝑖 ) have 650 ns per least significant bit, with additional clusters
around 1 µs, 1.5 µs, and 2.5 µs.

It also appears that the EnergyTrace library performs nontrivial
post-processing of received samples before passing them to API
consumers. Notably, the relation between a single voltage sample
in USB traffic and the corresponding data point returned by the API,
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(b) Relation of values observed in USB traf-
fic to voltages reported by the EnergyTrace
API.

Figure 3: Voltage and Duration values reported by the API.

and the relations between time and energy deltas in USB traffic and
API data, are neither left- nor right-unique.

The cumulative energy values in USB traffic are not monotonic:
About one in 50,000 samples is lower than its predecessor, indicating
a (highly unlikely) negative energy flow. The corresponding API
values are monotonic and consistent with expectations, however.
The mean resolution of energy data is 365 nJ per least significant bit.
In periods with very low power consumption, individual samples
may report Δ𝐸𝑖 = 0 due to the DCDC recharge frequency falling
below the sample rate. Here, an energy difference of 1 (in USB
traffic) corresponds to an API value of either 200 or 300 nJ.

For voltage readings, USB samples are likely transmitted as mil-
livolt values. We observe values from 3259 to 3297 in USB data, but
API samples only contain 3289 and 3290 mV in our benchmark (see
Fig 3(b)). This may be caused by a low-pass filter implemented in
the library. The mean deviation of API voltage from USB voltage
(assuming millivolt samples) is 11 mV.

As USB samples do not contain current readings, we conclude
that they are calculated on the host computer running the Energy-
Trace library. We find that they are filtered and downsampled to
10 to 750 Hz depending on power consumption. Therefore, we dis-
card current data provided by the API from now on, and calculate
current and power as follows: 𝐼𝑖 = Δ𝐸𝑖

𝑈𝑖 ·Δ𝑇𝑖 and 𝑃𝑖 = Δ𝐸𝑖
Δ𝑇𝑖

.

3.2 Energy Measurement Accuracy
We now examine the accuracy of energy readings reported by the
EnergyTrace API. As preliminary tests showed that the measure-
ment range of our boards is limited to about 25 mA, we performed
benchmarks in the 0 to 10 mA range, and calculated the Energy-
Trace current as noted above.

3.2.1 Benchmark. To minimize error sources, we did not use on-
board peripherals or benchmark programs here. Instead, we put
the MCU into a low-power sleep mode (LPM2, without wake-ups)
and connected a programmable current sink in parallel, using the
LaunchPad’s GND and 3V3 pins. We note that data is offset by the
MCU’s sleep mode current draw of about 2.4 µA (8 µW).

The current sink is a Keysight N6785A Source / Measurement
Unit (SMU) in a Keysight N6705B DC Power Analyzer. We con-
figured the built-in arbitrary waveform generator to control the
sink current using a trapezoid function. After a ten-second hold
at 0 mA, it ramps up to 10 mA (33 mW) over a 90-second interval,
holds there for 20 seconds, and ramps down to 0 mA, again over
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Figure 4: Histogram of EnergyTrace measurement error. Colors indicate different LaunchPad boards; bin size is 1 µA.

a 90-second interval. This cycle repeats three times, leading to a
total benchmark duration of 14 minutes per device. As the SMU
can only source and sink a discrete set of voltages and currents,
ramp-up and ramp-down consist of 99 constant-current steps. Each
step takes 909 ms; the step-width is 101 µA (333 µW). Voltage and
sink current are logged to a USB drive.

To avoid interference from a ground loop between computer
and power analyzer, we connected the LaunchPad to a computer
running on battery power, without wired Ethernet. We inserted
a low-dropout Schottky diode between the LaunchPad’s 3V3 pin
and the SMU to ensure that it does not damage the LaunchPad by
back-powering it when the sink current is 0 mA. We did not take
measures to minimize electro-magnetic interference (EMI), e.g. by
placing the setup inside a metal cage, as we expect it to be used
without such measures in practice as well.

For an additional verification measurement, we replaced the
LaunchPad with an N6784A current source (built into the same
power analyzer as theN6785A sink) and logged both sink and source
currents. As the SMUs have a current measurement accuracy of
0.025 % + 10 µA, the difference between source and sink current
should be limited to 25 µA at a sink current of 10 mA, and 20 µA in
the µA range.

We use the PELT changepoint detection algorithm provided by
the Python3 rupturesmodule to automatically split measurements
into constant-current steps for analysis [9, 14].

3.2.2 Observations. With just the on-board calibration automati-
cally performed by EnergyTrace, we observe a maximum absolute
error of 210 µA. Relative error is up to 6.9 % at 100 µA and nearly
constant at up to 2.9 % between 500 µA and 10 mA. Some boards
manage an error below 1 % in this range. Refer to Fig. 4(a) for indi-
vidual error distributions.

When using the 10 mA measurement for single-point calibration,
absolute error decreases to 53 µA, and the maximum relative error
is 5.2 % below 500 µA and 1.2 % above. See Fig. 4(b) for details.

In the reference measurement, with the power analyzer used
both as source and sink, we observe an offset of up to 43 µA in the
range below 800 µA. This is twice the expected maximum error
of 20 µA and may be caused by a ground loop inside the chassis,
and/or EMI. Beyond 800 µA, maximum deviations are 33 µA and
2.3 %, respectively. As this is only slightly higher than expected,
we consider the EnergyTrace accuracy results presented in the
preceding paragraphs to be sound.

4 SYNCHRONIZATION
Automatic model generation relies on a synchronization mecha-
nism to map benchmark events (e.g. function calls) to measurement
timestamps. Preferably, a measurement system provides a digital
input which is sampled with the same frequency and time base as
the energy readings. Thus, connecting an IO pin to the digital input
and toggling it on each benchmark event is sufficient. Combined
with a log of benchmark events, which is periodically dumped via
UART or another suitable channel and also automatically analyzed,
this allows for mapping IO events (indicating when something hap-
pened) to log entries (what happened) without user input, even
when dealing with nondeterministic hardware behaviour (e.g. in-
terrupts depending on radio transmission success/failure).

In our case, events are the start and end of transitions of an
automaton describing a single hardware device. Transitions are
typically caused by driver functions or signalled using interrupts,
so start and end of a transition coincide with start and end of the
corresponding function. Once the automaton and its interaction
with driver functions and hardware configuration (e.g. radio bit
rate) have been specified, model generation with our framework is
entirely automatic. For details, we refer to [6].

EnergyTrace does not provide a digital synchronization input.
We determine the start/end time of the benchmark using in-band
synchronization, and use one of the MSP430’s built-in counters to
obtain relative timestamps for each state and transition inbetween.

For in-band synchronization, our benchmarks use the Launch-
Pad’s on-board LEDs to generate synchronization pulses with a
well-defined duration and power consumption. There is one pulse
at the start and one at the end of the benchmark.

The counter is connected to the 16 MHz CPU clock without di-
viders to achieve maximum accuracy. It starts when the benchmark
start pulse ends, and its value is read and reset for each benchmark
event. When the benchmark end pulse begins, it is stopped and
also read. Between these pulses, it runs continuously. Therefore,
the time (in seconds) between the two synchronization pulses is
equal to the sum of obtained counter values divided by 16 MHz.

By logging the counter values for each event, including them
in the UART dump, and automatically detecting the benchmark
start/end synchronization pulses in the energy traces, we deter-
mine the corresponding EnergyTrace timestamp for each event and
perform automatic model generation for all hardware states and
transitions.
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As EnergyTrace measures whole-system energy, UART dumps
affect energy measurements and timing. However, they occur at de-
terministic points, and only when the system is in an idle state. We
automatically identify and ignore them during model generation.

Cycle counter and EnergyTrace timer are fed by different (uncal-
ibrated) clock sources at slightly different speeds. They may exhibit
a different amount of clock drift, and respond to environmental
effects (e.g. temperature fluctuations) in a different manner. We
devised a drift compensation approach and use it to minimize the
effect of drift on the synchronized event timestamps, as follows.

4.1 Drift Compensation
We detect changepoints in the power measurements within a 20 ms-
window around each uncompensated event timestamp (as deter-
mined by the cycle counter) using PELT [9]. Assuming that the
actual event timestamp coincides with a change in the device’s
energy consumption, each changepoint is a candidate for it.

Let 𝑇1, . . . ,𝑇𝑛 be the uncompensated timestamps of events 1 to
𝑛, and 𝐶𝑖 the set of changepoints for each event 𝑖 ∈ {2, . . . , 𝑛 − 1}.
Timestamps𝑇1 and𝑇𝑛 are synchronization pulses, which must have
a drift of zero, so we define 𝐶1 = {𝑇1} and 𝐶𝑛 = {𝑇𝑛}.

We select the compensated event timestamps 𝑇𝑖 ∈ 𝐶𝑖 so that

𝑛−1∑︁
𝑖=1

��(𝑇𝑖 −𝑇𝑖 ) − (𝑇𝑖+1 −𝑇𝑖+1)
��

is minimal. This exploits that the evolution of clock drift is small
for consecutive events (i.e., the difference between uncompensated
and compensated timestamp should be nearly the same). It is based
on the method used when manually analyzing benchmarks without
synchronization signals, but much faster and more accurate.

To handle events which are too short or insignificant to be found
by changepoint detection, we allow the timestamps𝑇𝑖 of individual
events to be determined by the mean drift of their neighbours in-
stead of a changepoint candidate from 𝐶𝑖 . We add a 270 µs-penalty
to the cost function (see above) for each event using such a calcu-
lated, non-changepoint timestamp to ensure that this only happens
when no viable changepoints have been found. The penalty is equal
to the mean measurement interval.

We now evaluate the accuracy of event timestamps obtained
both with and without drift compensation.

4.2 Benchmark
We wrote a custom driver whose only job is to flash one of the
LaunchPad’s LEDs for a specific duration. It provides several driver
functions, corresponding to flash durations between 100 µs and
10 ms. Its automaton consists of a single IDLE state (in which the
MCU sleeps) and one transition for each function (i.e., for each flash
duration). Energy traces obtained from automated benchmarks
performed with this driver can be partitioned into two sets: If mean
power is above 2 mW, either the LED is on and a transition function
is being executed, or a UART dump is in progress. Otherwise, the
LED is off and the automaton is in its IDLE state. Note that we chose
the power threshold so that we can reliably detect 100 µs flashes,
even though each sample covers an interval of up to 690 µs.
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Figure 5: Error distribution histogram of reported event
timestamps for 256-second benchmarks.

Again, UART activity is deterministic, so we automatically iden-
tify and remove it. This leaves us with precise timestamps for each
transition independent of clock drift. We use these as ground truth.

Our measurement framework is deliberately unaware of this
power partitioning scheme and only working with on-board timer
data and benchmark start/end synchronization points. By compar-
ing the transition timestamps calculated by our framework with the
ground truth, we determine the timestamp error caused by clock
drift during benchmark execution. Note that we may over-estimate
the error by up to 690 µs due to the limited resolution of Energy-
Trace measurements, as we have to assume that state/transition
boundaries and EnergyTrace interval boundaries overlap.

We used three benchmark configurations with different idle
times between transitions, corresponding to a total benchmark
duration (that is, the time between start and end synchronization
pulse) of 31, 82, and 256 seconds, respectively. Each of them per-
formed 2500 transitions. We ran each benchmark sequentially on
three different LaunchPads and performed a total of five bench-
mark runs per LaunchPad. We used the MSP430’s built-in Digitally
Controlled Oscillator (DCO) as 16 MHz clock source. It is the most
accurate high-frequency clock available on the board, and also the
default.

We performed additional measurements with a 16 MHz crystal
as clock source. For this, we soldered the crystal and two 22 pF
capacitors onto the HFXT pads of one of the LaunchPads.

4.3 Observations
With DCO and no drift compensation, we estimate a maximum drift
of 83 ppm. However, our benchmarks (with a maximum distance
of 128 s to the nearest synchronization point) do not exhibit the
correspondingworst-case error of 10.62 ms; we observe up to 6.2 ms.
With the crystal, drift decreases to 73 ppm (2.49 ms). Fig. 5(a) shows
the error distribution across all observed event timestamps.

Drift compensation reduces the maximum error to 0.95 ms, re-
gardless of clock source and benchmark duration (see Fig. 5(b)).
Although transitions shorter than 1 ms are not reliably found by
changepoint detection, our algorithm handles them well.

4.4 Alternatives
Some LaunchPads, including the MSP430FR5994 variant, support
EnergyTrace++. Here, each sample also contains the current state of
CPU and peripherals. As our benchmarks only wake up the CPU to
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perform a transition, its state is a reliable synchronization marker
for the benchmark’s progress. This eliminates clock drift issues, as
energy and CPU state records use the same clock source.

However, EnergyTrace++ decreases the sample rate to 1.1 kHz –
so it cannot provide higher timing accuracy than EnergyTrace with
drift compensation – and increases MCU power consumption due
to the debug interface requests needed to determine its state [5].
We were unable to obtain satisfactory results with it.

We also tested synchronization with a cheap external Logic
Analyzer instead of the built-in cycle timer. Both uncompensated
drift (105 ppm / 6.07 ms) and performance after drift compensation
(0.94 ms) were similar to DCO measurements.

5 RELATEDWORK
Most publications related to automatic model generation with off-
the-shelf hardware we are aware of focus on smartphones and
laptops, which have built-in measurement capabilities thanks to
their battery management units. For example, DevScope models
hardware states using a controller with 104 µA sensing resolution,
1 % measurement error, and an update rate of just 0.28 Hz [8].

An approach entirely without synchronization signals has been
proposed by Cherifi et al. [3]. It uses changepoint detection only,
and works even if no hardware timers are available. However, it
is neither well-suited for events which do not cause an observable
change in the energy consumption, nor for hardware whose energy
behaviour changes independent of benchmark events.

The iCount system is also nearly off-the-shelf: By soldering a
single connection to an already-present DCDC converter’s feedback
pin, it can measure energy with a maximum error of 20 % [4]. It uses
nearly the same method as EnergyTrace, but is far less accurate.

Apart from that, research focuses on building and testing custom
measurement devices. We give examples below.

EnergyBucket uses capacitors as charge pumps. Measurement
error is less than 2 % in the 1 µA to 50 mA range with a consumption-
dependent measurement interval ranging from 1152 to 0.005 Hz, at
an estimated cost of $60 plus assembly and calibration time [1].

MIMOSA employs capacitors to mirror the device’s energy con-
sumption instead, achieving an error of less than 10 µA at a constant
sample rate of 100 kHz [2].

FlockLab is a distributed testbed. Measurements are accurate
within 10 % at 100 µA and less than 0.5 % beyond 500 µA, using a
shunt resistor and a sample rate of either 28 kHz or 56 kHz [10].

RocketLogger provides a mobile measurement solution with
shunt resistor and dynamic range switching. It is accurate within
0.09 % at up to 500 mA and a maximum sample rate of 64 kHz [12].
Hardware cost is about $50.

6 CONCLUSION
We have shown how to perform entirely automated measurements
using an MSP430 LaunchPad’s EnergyTrace API and a custom syn-
chronization and drift compensation algorithm, applicable to any
measurement device without built-in synchronization support.

Out of the box – without any external hardware – we observe a
maximum error of 210 µA in the 100 µA to 10 mA range. Timestamps
are affected by a clock drift of 83 ppm; we observe a maximum error
of 6.2 ms during 256-second benchmarks.

With single-point calibration and our drift compensation algo-
rithm, maximum error decreases to 53 µA and 0.95 ms.

The biggest drawback of EnergyTrace is its combination of low
sample rate and lack of digital synchronization input. Our algorithm
limits the resulting inaccuracy, but energy samples occurring imme-
diately before or after a benchmark event may still be mis-attributed
to the preceding or following state/transition.

While it is certainly not a suitable replacement for measurement
devices and testbeds designed specifically for high accuracy and
automation – and not meant to be one, either – we are positively
surprised by the capabilities of such an affordable device.

We find that EnergyTrace is best suited for components with
either negligible energy demand in transitions, or sufficiently long
(multi-millisecond) transitions to make the mis-attribution error
nearly irrelevant. As long as users are aware of its limitations, it is
a handy tool not just for educational use, but also for comparative
measurements. Users willing to trade 157 µA of additional error for
convenience may even skip the calibration step.
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