
Poster Abstract: I2C Considered Wasteful
Saving Energy with Host-Controlled Pull-Up Resistors

Birte Friesel
birte.friesel@uos.de
Osnabrück University
Osnabrück, Germany

Olaf Spinczyk
olaf@uos.de

Osnabrück University
Osnabrück, Germany

ABSTRACT
The Inter-Integrated Circuit (I2C) bus is frequently used to con-
nect sensors and actuators to cyber-physical systems. It is designed
around always-on pull-up resistors, which transform valuable elec-
tric energy into heat whenever a 0-signal is sent or received. Using
a software I2C implementation which disables pull-ups when pos-
sible, we decrease the energy demand of I2C transmissions at the
cost of additional CPU time. On a low-power MSP430FR5969 micro-
controller, we observe 10 to 50 % lower whole-system energy usage
per transmission compared to conventional software I2C. An ad-
vantage over hardware I2C modules is only apparent at bus clocks
below 10 kHz.

KEYWORDS
embedded systems design, energy models, energy saving, i2c bus
ACM Reference Format:
Birte Friesel and Olaf Spinczyk. 2019. Poster Abstract: I2CConsideredWaste-
ful: Saving Energy with Host-Controlled Pull-Up Resistors. In The 18th Inter-
national Conference on Information Processing in Sensor Networks (co-located
with CPS-IoT Week 2019) (IPSN ’19), April 16–18, 2019, Montreal, QC, Canada.
ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3302506.3312606

1 INTRODUCTION
The Inter-Integrated Circuits (I2C) bus is one of the most common
interfaces for communication between system components. It con-
nects a master (usually a microcontroller) with up to several dozen
slave devices (sensors, actuators, and/or storage) by means of two
bidirectional wires: serial data (SDA) and serial clock (SCL) [2].

Transmissions are byte-oriented and clocked by the bus mas-
ter; clock frequency is limited to 100 kHz in standard mode. Each
transmission starts with a 7-bit slave address plus read/write bit,
followed by an arbitrary number of data bytes. After each byte
(both address and data), there is a ninth clock cycle providing an
ACK/NAK slot which is filled by the communication partner.

On the wire, SDA and SCL are pulled HIGH by pull-up resistors
(Rp) connected to VCC (see Fig. 1). A HIGH signal is sent by doing
nothing, and a LOW signal by pulling the line to GND, causing a
current to flow through the corresponding pull-up. Therefore, in
addition to the energy spent in CPU and peripheral device, each I2C

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IPSN ’19, April 16–18, 2019, Montreal, QC, Canada
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6284-9/19/04.
https://doi.org/10.1145/3302506.3312606

Figure 1: A typical I2C bus layout.

𝑅/𝑊 ACK

NAK

SDA bit 7 bit 6

SCL
SDA bit 7 bit 6 bit 0

SCL

Figure 2: Master-controlled periods during an I2C write
(tinted blue/magenta) and read (tinted red/magenta).

transmission consumes energy in the pull-ups. Although this has
been noted before [1], to our knowledge, no attempt at minimizing
pull-up usage has been published so far. Yet, especially for battery-
less energy harvesting devices, every saved microjoule counts.

2 REDUCING TRANSMISSION COST
During each clock cycle, SCL is low for half the time and SDA is
either high (1-bit/NAK) or low (0-bit/ACK). The amount of energy
lost to pull-up resistors in this time range depends on resistance
𝑅𝑝 , bus voltage𝑈 , and bus frequency 𝑓 :

𝐸𝑆𝐶𝐿,∗ =
𝑈 2

2𝑅𝑝 𝑓
; 𝐸𝑆𝐷𝐴,0 =

𝑈 2

𝑅𝑝 𝑓

A transmission with 𝑛 data bytes uses 9𝑛 + 9 clock cycles. It
contains 𝑛 ACK signals and up to 8(𝑛 + 1) 0-bits in address and
data, giving a total transmission cost in the following range:

𝐸𝑆𝐶𝐿 = (9𝑛 + 9) · 𝐸𝑆𝐶𝐿,∗
𝑛 · 𝐸𝑆𝐷𝐴,0 ≤ 𝐸𝑆𝐷𝐴 ≤ (9𝑛 + 8) · 𝐸𝑆𝐷𝐴,0

As shown in Fig. 2, SCL is always controlled by the master1, and
SDA for 89 % of the time for I2C writes (8𝑛 + 8 cycles) and up to
50 % of the time for reads (𝑛 + 8 cycles). In the general case, the
master is responsible for the majority of energy lost in pull-ups.

We therefore propose connecting the pull-ups to the bus master
instead of VCC and disabling them while it is transmitting a low
signal on the corresponding line. This way, no energy is lost to
pull-ups during this time: 𝐸𝑆𝐶𝐿 becomes zero, and 𝐸𝑆𝐷𝐴 is reduced
by up to 89 % depending on data direction and the amount of 0-bits.
1Unless a slave device employs clock stretching, which causes additional pull-up energy
consumption. It can often be remedied by lowering the bus frequency.

https://doi.org/10.1145/3302506.3312606
https://doi.org/10.1145/3302506.3312606


IPSN ’19, April 16–18, 2019, Montreal, QC, Canada Birte Friesel and Olaf Spinczyk

50 100 150 200 250

1MHz / 10kHz
1MHz / 10kHz
8MHz / 10kHz
8MHz / 10kHz
8MHz / 50kHz
8MHz / 50kHz
16MHz / 50kHz
16MHz / 50kHz
16MHz / 100kHz
16MHz / 100kHz

Energy per Transmission [µJ]

CP
U
/I

2 C
Cl
oc
k
Fr
eq
ue
nc
y

Figure 3: Software I2C with (blue/top) and without
(red/bottom) pull-up control. Each transmission consists of
a 1-byte write followed by a 2-byte read.

The only requirements are two additional master output pins
(one per resistor) and an adjusted I2C implementation. With proper
timing, disabled pull-ups are transparent to slave devices and do
not violate the I2C specification.

3 EVALUATION
The net amount of energy saved by this approach depends on the
microcontroller and I2C implementation in use: although 𝐸𝑆𝐷𝐴 and
𝐸𝑆𝐶𝐿 are decreased, the energy consumed by the CPU is increased
due to additional CPU cycles required for pull-up control.

I2C can be implemented in software and in hardware. Software
I2C (also known as bit-banging) requires the CPU to wake up at
least twice per clock cycle and read/set SDA and SCL as appropriate.
If the microcontroller contains an I2C hardware module, it can
handle the protocol and send/receive single bytes autonomously;
this typically requires just one wakeup per byte.

Adjusting a software implementation is easy: whenever toggling
SDA/SCL between high impedance and output low, toggle the corre-
sponding pull-up as well. This introduces almost no overhead. The
functionality of hardware modules, on the other hand, cannot be
altered. Unless developers are designing a custom microcontroller
and willing to add this feature, pull-up control is only possible by
switching to a less energy-efficient software implementation.

To confirm that master-controlled pull-ups are more efficient
than conventional software I2C, and assess whether software I2C
with pull-up control is more efficient than hardware I2C with
always-on pull-ups, we implemented all three variants on an ultra-
low-power MSP430FR5969 microcontroller connected to an LM75
I2C temperature sensor. We measured the energy consumed by the
entire system (controller, pull-ups, and sensor) while varying bus
clock, CPU frequency, and data direction.

Typical I2C implementations use 1.8 V and pull-ups between 1
and 2.2 kΩ. Since our evaluation board only provides a fixed voltage
of 3.6 V, we used 3.9 kΩ pull-ups, which consume nearly the same
amount of power as 1 kΩ resistors at 1.8 V.

For software I2C, results confirm that manual pull-up control
reduces transmission cost by 10 % at 100 kHz and up to 50 % at lower
clock rates, regardless of CPU frequency (see Fig. 3 for an excerpt).
As the two software I2C variants have nearly identical source code,

0 100 200 300

1MHz / 1kHz
1MHz / 1kHz
1MHz / 5kHz
1MHz / 5kHz
8MHz / 10kHz
8MHz / 10kHz
8MHz / 100kHz
8MHz / 100kHz
16MHz / 100kHz
16MHz / 100kHz

Energy per Transmission [µJ]

CP
U
/I

2 C
Cl
oc
k
Fr
eq
ue
nc
y

Figure 4: Software I2Cwith (blue/top) and hardware I2Cwith-
out (red/bottom) pull-up control. Each transmission consists
of a 1-byte write followed by a 2-byte read.

we expect similar results on other microcontrollers. If software I2C
is used anyway, we therefore recommend implementing pull-up
control.

In case of hardware I2C, both theoretical and empirical results
indicate that it is more efficient than either software I2C implemen-
tation. For typical transmissions at 100 kHz, the amount of energy
saved by pull-up control (𝐸𝑆𝐶𝐿 +𝐸𝑆𝐷𝐴) is lower than the additional
energy consumption caused by more frequent CPU wakeups.

In our case, this only changes at bus frequencies below 3 to
10 kHz (see Fig. 4), which are rarely used in practice. So, unless
a slave device requires unusually low frequencies, hardware I2C
should be used where possible. However, as the efficiency of soft-
ware I2C depends on the efficiency of the microcontroller itself,
this is not a general result.

4 CONCLUSION
We have presented a simple, but effective, method to decrease the
energy lost in pull-ups during I2C transmissions, giving a net energy
saving of 10 % per transmission for typical software I2C implemen-
tations. Implementing this method in hardware I2C modules should
reduce energy use even more, however, this is only feasible when
designing custom hardware, e.g. when working with FPGAs.

Although the wide availability of energy-efficient hardware I2C
modules limits the immediate practical impact of this result to
microcontrollers without hardware I2C support (such as ESP8266
Wi-Fi SoCs), we think that it makes an important point. It pays off
to analyze all components of an embedded system, even if they are
several decades old and taken for granted. Energy saving may be
possible using simple and, in retrospect, obvious adjustments.

REFERENCES
[1] A. K. Oudjida, M. L. Berrandjia, R. Tiar, A. Liacha, and K. Tahraoui. 2009. FPGA

implementation of I2C & SPI protocols: A comparative study. In 2009 16th IEEE
International Conference on Electronics, Circuits and Systems - (ICECS 2009). 507–510.
https://doi.org/10.1109/ICECS.2009.5410881

[2] NXP Semiconductors. 2012. I2C-bus specification and user manual. Rev. 5.

https://doi.org/10.1109/ICECS.2009.5410881

	Abstract
	1 Introduction
	2 Reducing Transmission Cost
	3 Evaluation
	4 Conclusion
	References

