
Parameter-Aware Energy Models
for Embedded-System Peripherals

Birte Friesel, Markus Buschhoff, Olaf Spinczyk
Embedded System Software Group

TU Dortmund
Dortmund, Germany

Email: {birte.friesel,markus.buschhoff,olaf.spinczyk}@tu-dortmund.de

Abstract—Energy models support monitoring and prediction
of energy use, which is essential for the development and usage
of transiently powered systems. However, model generation is
a time-consuming and repetitive task. Also, available energy
modeling solutions typically assume hardware configurations to
be constant, although configuration changes can significantly
impact hardware behaviour. Here we present a work-in-progress
algorithm for the automatic generation of configuration-aware
energy models for system peripherals. We determine the influence
of configurable hardware parameters on model attributes and
generate functions to describe it. We also propose a new transition
energy model to improve energy accounting accuracy without
additional overhead. Initial tests show promising results with
mean absolute model error less than 1.5% for various hardware
configurations.

I. INTRODUCTION

The ongoing Internet of Things and Industry 4.0 trends
have given rise to a range of embedded systems pervading
many aspects of daily life. Each of these needs energy to
function, which often cannot be delivered by a wired power
supply. Batteries provide an alternative power source, but
need to be replaced or recharged when empty. For remote or
dense deployments, such as several thousand smart shipping
containers in a warehouse, regular battery management is an
impractical solution.

Energy harvesting addresses this issue, but poses new chal-
lenges: Now, the task is to avoid an unexpected loss of power,
which is caused by energy demand exceeding the energy
available from the battery and/or via harvesting. Although this
can be tested by placing the system in a typical environment
and observing its power state, such tests are time-consuming
and need to be repeated whenever the environment changes.
They also contribute to a “black box” view of the system: the
energy use of individual components is unknown.

Here, energy models provide a remedy. For example, a
model for a radio transceiver can calculate its energy con-
sumption according to the actual number of bytes to transmit.
Models can be used both at design-time (offline) to determine
the expected system lifetime without lengthy tests, and at
runtime (online) for energy accounting and adaptive behaviour.

It is useful to embed models at the hardware-software
boundary (i.e., by modeling effects of individual driver func-
tions) and use separate models for each system peripheral.

Additionally, models should be aware of hardware configura-
tion (parameters), which may change at design- or run-time
and affect energy consumption and hardware timing.

Thus, energy models become independent of high level
implementations. This allows developers to choose soft- and
hardware best suited for their use case by comparing different
combinations in simulation. Additionally, modeling the entire
hardware configuration space supports system designers when
making trade-offs, e.g. to determine the best compromise
between energy use and expected packet loss for a radio chip.

Generating these models, however, is a tedious and error-
prone endeavour and cannot be averted by relying on gut in-
stinct or datasheets instead [1], [2]. Existing solutions are often
use-case-specific and show significant differences in model
quality, as each developer needs to decide on a compromise
between accuracy and simplicity [3].

In this paper, we present our work-in-progress framework
for automatic generation of configuration-aware energy models
for individual embedded-system peripherals using priced timed
automata. Although we rely on well-known components, we
are not aware of any general-purpose modeling framework
providing all of these features. We also present a novel model
of transition energy (i.e., the energy used during execution
of driver functions), which improves model accuracy without
affecting energy accounting performance.

Of course, our approach still has limitations which we
expect to address in the future. Most notably, it assumes that
hardware/driver interactions are deterministic and correspond
to a simplified automata model. Nevertheless, we have already
successfully used it for energy accounting on several dozen
radio chips in an IoT Smart Warehousing prototype [4].

In the next section, we list a selection of related work. We
present our model in sections III and IV, and the generation
algorithm in section V. We conclude with preliminary results
in section VI and discussion and future work in section VII.

II. RELATED WORK

There is a variety of automatic modeling frameworks for
smartphones and laptops mapping power consumption to
hardware states, e.g. DevScope and PowerBooter [5], [6].
However, both rely on manually specified regression formulas
and do not account for transition costs, negatively affecting
their accuracy [7]. Entirely transition-based models can also978-1-5386-4155-2/18/$31.00 ©2018 IEEE

TX
fTX(pl, tp)

IDLE
9.5mW

init

send(data, length)
T := 0; pl := length

4.3 µJ, 454nJ∆, 400 µs

TX complete interrupt
T = (366 + 80102

dr + 8000 pl
dr) µs

0 J, 0 J∆, 0 s

Fig. 1. Partial PTA for a CC1200 radio transceiver with configurable payload
length (pl), data rate (dr) and TX power (tp). Timer T is reset when calling
send; the TX state is left once T reaches the expected transmission time
specified by ft. Other states, transitions, and functions omitted for brevity.

be automatically generated, but do not support permanent state
changes, such as turning peripherals on or off [8].

Models for WSNs typically focus on the radio module, as it
is the most power-hungry component [9]–[11]. They often use
automata models, but require manual energy data calculation
and do not consider variable hardware parameters.

Symbolic regression can be used to determine basic natural
laws [12]. Similarly, parameter influence on model attributes
can be automatically determined [7]. However, we are not
aware of publications using symbolic regression for energy
modeling or general-purpose modeling frameworks using au-
tomatic detection of parameter influence.

III. MODEL

We use parameterized priced timed automata (PTA) to
model hardware behaviour. A PTA is a deterministic finite
automaton (DFA) with timers, transition durations, and costs.
Timers can be reset by transitions and cause other transitions
when reaching a certain value; costs are modeled as transition
energy and state power.

Each PTA state corresponds to a hardware state, and each
transition corresponds to a driver function or hardware inter-
rupt. Thus, our model is placed right at the hardware-software
boundary. Fig. 1 shows part of an example energy model for a
radio chip. The radio is either IDLE or in TX (transmit) mode.
Calling init initializes the radio into IDLE mode, whereas send
initiates a transmission and hence causes a state change to
TX. Once transmission is complete, an interrupt indicates that
the radio is in IDLE mode again. Radio behaviour can be
configured using the parameters pl, dr, and tp, which we will
explain in section IV.

For each state, we model the hardware’s mean power
consumption P . For each transition, we model its duration
t (i.e., how long it takes to execute the corresponding driver
function) and total energy E consumed by the hardware during
this time. We also model relative energy ∆E, which is the
total energy adjusted for the energy consumption caused by
the preceding (and still active) state q as shown in Fig. 2. We
define ∆E = E − (Pq · t).

As interrupts are instantaneous, we let t = E = ∆E = 0
for interrupt transitions. Instead, we model their timeout T ,
which is the time spent in the previous state (i.e., the delay
until the interrupt fires).

Transition
(relative)

Transition
(absolute)

State

t

P

t t t10 2

Fig. 2. Relative (hatched area) and absolute (red) transition energy.

The benefits of relative transition energy are twofold. First,
online energy accounting needs timestamps to calculate the
energy spent in each state. If transition energy is ignored, a
single timestamp (marked t0/t2 in Fig. 2) at the end of each
transition is sufficient, as it marks both the end of the current
and the beginning of the next state. It is also sufficient when
using relative transition energy, as the state-related (absolute)
part of the transition energy has already been subtracted. By
contrast, two timestamps (t0/t2 and t1) are needed for absolute
transition energy, thus increasing energy accounting overhead.

Second, as driver functions need to communicate with
hardware to alter its state, changes caused by driver functions
typically happen at the end rather than the beginning of their
execution. So, during a transition, the original state is still
influencing the hardware power consumption, which in turn
influences the transition energy E. As relative energy accounts
for this, it better captures the communication and transition
overhead. We also expect it to be easier to model.

IV. MODEL PARAMETERS

We consider two kinds of model parameters: Hardware
configuration (global parameters) and driver function argu-
ments (local parameters). Global parameters influence hard-
ware behaviour permanently once set, whereas local function
arguments are only relevant for the corresponding transition.

The model shown in Fig. 1 contains the global parameters
payload length (pl), data rate (dr), and TX power (tp). Func-
tions may change global parameters. For instance, pl is set to
the second argument of send(...), and br is updated by
calling setBitrate(br) (not shown in the example PTA).

For each state and transition, p⃗ denotes the current parameter
values (only global parameters for states, global and local ones
for transitions). Whenever a transition changes global param-
eters, the new values only go into effect after its execution
completes – during execution, the old parameters remain valid.

V. MODEL GENERATION

Model generation relies on measurements of all hardware
states and transitions with as many parameter combinations
as feasible. It assumes that measurements consist of runs
through the hardware/driver automaton and provide duration,
consumed energy, and current parameter values for each state
and transition in each run. We developed a highly automated
workflow to generate benchmark programs and annotate mea-
surements for this analysis [13].

The model generation process consists of two steps: Iden-
tification of relevant parameters for each model attribute

(power, duration, (relative) energy, and timeout), and mod-
eling of parameter-dependent attributes using functions. We
use the median of all available measurements for parameter-
independent model attributes.

We also build a static parameter-aware reference model
(a look-up table mapping parameter values to median
power/energy/duration of states and transitions for the respec-
tive parameter values), as well as additional reference models
which ignore certain parameters. These are used to determine
the influence of hardware parameters on model attributes.

A. Determining Parameter Influence

We use a simple heuristic: If the mean error of the
parameter-aware reference model is significantly lower than
the mean error of the reference model which ignores the
presence of a single parameter i, this is likely caused by
parameter i influencing the modeled hardware attribute. If the
mean errors are near equal, we assume that i does not influence
the model attribute in question.

Since these models are static, the root mean square error
of each model is identical to the standard deviation of the
underlying data (using the median as expected value µ).
It is therefore sufficient to compare the standard deviations
of appropriately partitioned measurement data. For a model
attribute X , these are

• σX (the mean standard deviation of measurements used
to create the parameter-aware reference model) and

• σX,i (same, but ignoring parameter i).
We define a difference of at least 50% to be significant: If

σX,i > 2 · σX , we assume that parameter i influences model
attribute X .

As this is best illustrated in an example, consider a radio
module with configurable bitrate and payload length. Mea-
surements are available for bitrates 100, 250 and 1000, and
payload length 16 and 32. To determine the influence of bitrate
and payload length on the txComplete interrupt timeout, we
consider the following three values.

σT = mean{σT,(100,16), σT,(100,32), σT,(250,16), . . . }
σT,bitrate = mean{σT,(∗,16), σT,(∗,32)}
σT,length = mean{σT,(100,∗), σT,(250,∗), σT,(1000,∗)}

We proceed by building functions for each model attribute
with at least one relevant parameter.

B. Building Model Functions

We first analyze each relevant parameter in isolation and
fit a set of domain-specific functions using least squares re-
gression. After having determined the best function to predict
the individual influence of each parameter, we combine the
functions into a single model function.

To minimize the risk of overfitting, we only consider simple
linear, logarithmic, exponential, square, inverse, and square
root dependencies, as well as the amount of one and zero bits
in the parameter’s binary representation.

For each relevant parameter i, we partition the measure-
ments so that, in each set, i is variable and all other parameters
are constant. This is the partitioning scheme we already used
to calculate σX,i.

For each partition and each influence type (denoted as g)
mentioned above, we fit a · g(p⃗[i]) + b using least squares
regression and note the root mean square (RMS) error of the
fitted function on the training data. We also note the RMS error
of a static reference function, which simply uses the median
of all data in the respective partition as a model.

The function with the lowest mean RMS over all partitions
is the best description of the model influence of parameter i
we have. However, if its mean RMS is higher than the mean
RMS of the reference function, this indicates that our function
set is unable to properly describe the parameter’s effects. In
this case, we update the model to consider the attribute to be
independent of the parameter.

For example, to determine the influence of bitrate on the
previously mentioned txComplete timeout, we run a set of
regressions on all measurements with a payload length of 16
Bytes, and a separate set of regressions on all measurements
with a payload length of 32 Bytes. Assuming the inverse
function has the lowest mean RMS on both data sets, we
determine an inverse influence of bitrate on transmission time.

This leaves us with a set F of functions, each of which
describes the influence of a single parameter. However, we
still need to combine them into a single model function.

At this point, we need to consider parameter interdependen-
cies. For instance, transmission time might simply be length

bitrate ,
or a combination of length

bitrate and bitrate (due to a fixed-length
preamble). To avoid having to make assumptions about these
interdependencies, we consider all possible combinations of
the individual parameter functions as specified in equation 1.

g(p⃗) =
∑

F ′∈P(F)

aF ′ ·
∏
f∈F ′

f(p⃗)

 (1)

This combined function is in turn fitted on all measurements
using least squares regression with aF ′ as regression variables.
We update the model with g(p⃗) and the optimized regression
variables aF ′ . For combinations of non-interdependent param-
eters, we rely on least squares regression to determine aF ′ ≈ 0.

Returning to the txComplete timeout example once more,
F = (fbitrate, flength) = ((br, len) 7→ br−1, (br, len) 7→ len) is
a typical result. We refer back to Fig. 1 for the corresponding
model function.

VI. PRELIMINARY RESULTS

So far, we have generated models for four peripherals:
Two radio chips (Nordic nRF24L01+ and Texas Instruments
CC1200) with configurable transmission power, bitrate and
packet length (and other parameters, which we leave out for
now), a temperature sensor (LM75B) with configurable alarm
thresholds, and a synthetic peripheral with configurable power
consumption behaviour.

−10 −5 0 5

60

80

100

120

Radio Output Power [dBm]

M
ea

n
Po

w
er

in
T

X
St

at
e

[m
W

]

Fig. 3. TX power prediction using our approach (solid) and symbolic
regression (dashed) for two distinct bitrates. Dots indicate measurements.

We ran measurements repeatedly to decreases the chance
of noisy data affecting the parameter influence detection.
To determine model error, we used 200 Monte-Carlo cross-
validation runs with data split into 2

3 training and 1
3 validation.

Preliminary results show that parameter influence detec-
tion and regression modeling work reliably. For CC1200 TX
power and txComplete timeout, the model error is 0.7% and
0.1%; for the nRF24 module it is 1.2% and 0.01%. By
comparison, parameter-unaware model error ranges from 16%
to 87%. As expected, we do not detect parameter influence
for LM75B settings. Automatically generated models for the
synthetic peripheral consistently reflect the programmed power
consumption function. Apart from a correction of CC1200 TX
power offsets, all models were created automatically.

We also examined symbolic regression as implemented by
the Python3 gplearn toolkit. Although it generates functions
with a lower mean absolute error than our results, they contain
50 to 100 sub-terms and suffer from overfitting, even when
tuning the toolkit’s parsimony coefficient to favour simple
functions over complex ones. Fig. 3 shows a striking example:
The symbolic regression model around 2 dBm is not correct.

We assume that this is due to the sparse nature of available
parameter values, which in turn is caused by limited measure-
ment time. We expect to follow up on this later.

Finally, relative transition energy proved valuable: Com-
pared to models without transition energy, it decreased model
error by 0.1 to 85% depending on hardware and use case. In
terms of model accuracy, the difference between relative and
absolute energy is low – we did not find conclusive evidence
favouring one over the other. However, given the difference
in accounting overhead pointed out in section III, relative
transition energy should be used for online energy models.

VII. CONCLUSION AND FUTURE WORK

We have presented a work-in-progress algorithm for auto-
matic generation of parameter-aware energy models for em-

bedded system peripherals. It determines parameter influence
by comparing standard deviations of appropriately partitioned
data sets and generates model functions using two stages of
least squares regression on a set of domain-specific function
prototypes.

Although we operate under a simplified driver and hardware
model without hidden transitions and without functions (such
as feature toggles) with more than one possible destination
state, preliminary results are promising. We hope to address
these limitations in the future.

ACKNOWLEDGMENT

This work was partly supported by the German Research
Council (DFG) within the Collaborative Research Centre
SFB 876, project A4.

REFERENCES

[1] N. Zhu and I. O’Connor, “Energy measurements and evaluations on
high data rate and ultra low power wsn node,” in 10th International
Conference on Networking, Sensing and Control (ICNSC). IEEE, 2013,
pp. 232–236.

[2] D. Harrison, “Busting myths of energy models for wireless sensor
networks,” Electronics Letters, vol. 52, pp. 1412–1414(2), August 2016.

[3] P. Hurni, B. Nyffenegger, T. Braun, and A. Hergenroeder, “On the
accuracy of software-based energy estimation techniques,” in Wireless
Sensor Networks, ser. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2011, vol. 6567, pp. 49–64.

[4] R. Falkenberg, M. Masoudinejad, M. Buschhoff, A. K. Ramachan-
dran Venkatapathy, D. Friesel, M. ten Hompel, O. Spinczyk, and
C. Wietfeld, “PhyNetLab: An IoT-based warehouse testbed,” in 2017
Federated Conference on Computer Science and Information Systems
(FedCSIS), Sep. 2017.

[5] W. Jung, C. Kang, C. Yoon, D. Kim, and H. Cha, “Devscope: A non-
intrusive and online power analysis tool for smartphone hardware com-
ponents,” in Proceedings of the Eighth IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis, ser.
CODES+ISSS ’12. New York, NY, USA: ACM, 2012, pp. 353–362.

[6] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao,
and L. Yang, “Accurate online power estimation and automatic battery
behavior based power model generation for smartphones,” in Pro-
ceedings of the eighth IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis. ACM, 2010, pp.
105–114.

[7] J. C. McCullough, Y. Agarwal, J. Chandrashekar, S. Kuppuswamy, A. C.
Snoeren, and R. K. Gupta, “Evaluating the effectiveness of model-based
power characterization,” in USENIX Annual Technical Conf, vol. 20,
2011.

[8] M. B. Kjærgaard and H. Blunck, Unsupervised Power Profiling for
Mobile Devices. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 138–149.

[9] H.-Y. Zhou, D.-Y. Luo, Y. Gao, and D.-C. Zuo, “Modeling of node
energy consumption for wireless sensor networks,” Wireless Sensor
Network, vol. 3, no. 01, p. 18, 2011.

[10] O. J. Adinya and L. Daoliang, “Transceiver energy consumption models
for the design of low power wireless sensor networks,” in 2012 IEEE
Student Conference on Research and Development (SCOReD), Dec
2012, pp. 193–197.

[11] B. Snajder, V. Jelicic, Z. Kalafatic, and V. Bilas, “Wireless sensor
node modelling for energy efficiency analysis in data-intensive periodic
monitoring,” Ad Hoc Networks, vol. 49, pp. 29 – 41, 2016.

[12] M. Schmidt and H. Lipson, “Distilling free-form natural laws from
experimental data,” Science, vol. 324, no. 5923, pp. 81–85, 2009.

[13] M. Buschhoff, D. Friesel, and O. Spinczyk, “Energy models in the
loop,” in Proceedings of the 8th International Sumposium on Internet
of Ubiquitous and Pervasive Things (IUPT 2018), to appear.

